SHIVAJI UNIVERSITY, KOLHAPUR
 Question Bank For Mar 2022 (Summer) Examination

Subject Code : 78912
Subject Name : Statistics Paper VII
Q.1. Select the correct alternative from the following:

1. If $X U(a, b)$ then mean of the distribution is \qquad
a) $\frac{(b-a)}{2}$
b) $\frac{(a-b)}{2}$
c) $\frac{a b}{2}$
d) $\frac{(a+b)}{2}$
2. $X \sim U(a, b)$ with mean 3 and variance 3 respectively then \qquad
a) $a=8, b=2$
b) $a=10, b=6$
c) $a=2, b=8$
d) $a=10, b=3$
3. $\mathrm{X} \sim \mathrm{U}(\mathrm{a}, \mathrm{b})$ such that $P[|X|>1]=\frac{6}{7}$ then value of a is \qquad
a) 7
b) 6
c) 14
d) 12
4. If $\mathrm{X} \sim \mathrm{U}(0,1)$ then distribution of $Y=-\frac{1}{\theta} \log X$ is \qquad
a) uniform
b) exponential
c) gamma
d) none of these.
5. $\mathrm{X} \sim \mathrm{U}(-1,1)$ then value of $\mathrm{P}(\mathrm{X} \leq 0)$ is \qquad
a) 0.5
b) 1
c) $1 / 3$
d) 0
6. If $\mathrm{X} \sim \mathrm{U}(\mathrm{a}, \mathrm{b})$ then distribution of $Y=\frac{X-a}{b-a}$ follows \qquad
a) uniform
b) exponential
c) gamma
d) none of these.
7. Let X has $U(0,1)$ distribution. Then $E(1 / X)$ is equal to
a) 1
b) $1 / 2$
c) $\log (1 / 2)$
d) Does not exist.
8. Let $\mathrm{X} \sim \mathrm{U}(0,1)$ then distribution of $Y=-\lambda^{-1} \log (1-X)$, for $\lambda>$ o is-------
a) Exp. With Mean ($1 / \lambda$)
b) Exp. With mean λ
c) Uniform over $[0,1 / \lambda]$
d) Uniform over $[0, \lambda]$
9. $\mathrm{X} \sim \mathrm{U}(-3,2)$ then $\mathrm{P}\{|\mathrm{X}| \leq 2\}$
a) $2 / 5$
b) $1 / 2$
c) $4 / 5$
d) 1
10. Let $\mathrm{X} \sim \mathrm{U}(5,10), \mathrm{Y}_{1}=(\mathrm{X}-5) / 5$ and $\mathrm{Y}_{2}=(10-\mathrm{X}) / 5$ then which of the following sentence is false ?
a) Y_{1} and Y_{2} are identically distributed.
b) $\mathrm{Y}_{1} \sim \mathrm{U}(-1,0)$ and $\mathrm{Y}_{2} \sim \mathrm{U}(0,1)$
c) Y_{1} and Y_{2} have both $U(0,1)$
d) Distribution of Y_{1} and Y_{2} is symmetric.
11. If $X \sim F(x)$, any continuous distribution function then distribution of $F(X)$ is \qquad
a) $\mathrm{U}(0,1)$
b) Degenerated at 0
c) Degenerated at 1
d) Discrete uniform over $\{0,1\}$
12. Let $\mathrm{E}(\mathrm{Y} / \mathrm{X}=\mathrm{x})=2 \mathrm{x}, \mathrm{V}(\mathrm{Y} / \mathrm{X}=\mathrm{x})=4 \mathrm{x}^{2}$. Suppose $\mathrm{X} \sim \mathrm{U}(0,1)$, what is $\mathrm{V}(\mathrm{Y})$?
a) $7 / 3$
b) $5 / 3$
c) $4 / 3$
d) $1 / 3$
13. If $Y \sim \operatorname{Exp}(\theta)$ then distribution of $Z=e^{-\theta y}$ is \qquad
a) $\mathrm{U}(0,1)$
b) $\mathrm{U}(-1,1)$
c) Exp (1)
d) $\operatorname{Exp}(\theta)$
14. The exponential distribution is \qquad
a) Positively skewed and leptokurtic
b) Positively slewed and platykurtic
c) Negatively platyokurtic
d) Negatively skewed and leptokurtic
15. Let X and Y be i.i.d exponential random variables with mean θ.

Let $\quad \alpha:(\mathrm{X}+\mathrm{Y}) / 2$ is exponential r.v with θ.
$\beta:(\mathrm{X}+\mathrm{Y})$ is exponential r.v with θ.
a) Only α is true
b) Only β is true
c) Both $\alpha \& \beta$ true
d) Both $\alpha \& \beta$ false
16. Ar. v. X has an exponential distribution with mean 6 , then $P[X>9 / X>3]$ is----
a) $e^{-1.5}$
b) $e^{-0.5}$
c) $e^{-1.0}$
d) $e^{-6.0}$
17. If X follows exponential distribution with mean β then $E\left(e^{-(X / \beta)}\right)$ is \qquad
a. a) 1
b) $1 / 2$
c) 0
d) 2
18. If $X \sim \operatorname{Exp}(\theta)$ then $P_{r}\{X>(t+s) / X>t\}$ depends on \qquad
a) all s, t \& θ
b) only on s \& t
c) only on s \& θ
d) only on t \& θ
19. If X follows exponential distribution with mean ($1 / \theta$) then mgf of X is \qquad
a) $(1-t / \theta)^{-1}$
b) $(1-\mathrm{t} / \theta)$
c) $(1-\theta / t)^{-1}$
d) $(1-\theta / t)$
20. If $X \sim \exp (1)$ then the distribution of $Y=e^{-x}$ is \qquad
a) $\exp (1)$
b) $\exp (1 / 2)$
c) $\mathrm{U}(0,1)$
d) $\mathrm{U}(0,2)$
21. If X and Y are i.i.d. exponential variate with mean α then $\mathrm{X}+\mathrm{Y}$ has \qquad
a) $G\left(\frac{1}{\alpha}, 2\right)$
b) $G\left(\frac{2}{\alpha}, 1\right)$
c) $G(\alpha, 2)$
d) $G\left(\alpha, \frac{1}{2}\right)$
22. For standard exponential distribution, variance of the distribution is \qquad
a) 1
b) 0
c) 2
d) none of these
23. If X follows exponential distribution with mean $(1 / \theta)$ then mgf of X is
a) $(1-t / \theta)^{-1}$
b) $(1-\mathrm{t} / \theta)$
c) $(1-\theta / t)^{-1}$
d) $(1-\theta / t)$
24. If $X \sim G(3,8)$ and $Y \sim G(3,6)$ are independent gamma variates then the probability distribution of $\mathrm{X} / \mathrm{X}+\mathrm{Y}$ is \qquad
a) $\beta_{1}(8,6)$
b) $\beta_{1}(6,8)$
c) $\beta_{2}(8,6)$
d) $\beta_{2}(6,8)$
25. Let X is Gamma distributed with scale parameter α and shape parameter λ. For which of the following choice X follows an exponential distribution.
a) $\alpha=\lambda=1$
b) $\alpha=2, \lambda=1$
c) $\lambda=1$
d) All of above
26. Let $X \sim \operatorname{Gamma}(3,5), Y \sim \operatorname{Gamma}(3,6)$ are independently distributed. Then distribution of $\frac{X}{X+Y}$ is
a) $\beta_{1}(5,6)$
b) $\beta_{2}(5,6)$
c) $\beta_{1}(6,5)$
d) $\beta_{2}(6,5)$
27. Let $X_{1} \sim G(8,2), X_{2} \sim G(10,5)$ be independent variables then distribution of $\frac{5 X_{2}}{4 X_{1}+5 X_{2}}$ is ----
a) $\beta_{2}(2,5)$
b) $\beta_{2}(5,2)$
c) $\beta_{1}(5,2)$
d) $\beta_{1}(4,5)$
28. If independent random variables X and Y are distributed as $G(1,5)$ and $G(1,10)$ respectively. Define $\mathrm{U}=(\mathrm{X}+\mathrm{Y})$ and $\mathrm{V}=\mathrm{X} /(\mathrm{X}+\mathrm{Y})$ then-
a) U and V are also Independent
b) $U \sim G(1,15)$ and $V \sim \beta_{1}(5,10)$
c) Only b) is true
d) Both a) and b) are true.
29. If $X \sim G(1, \theta)$ then it \qquad
a) is always positively skewed and laptykurtic
b) has positive skewness\&/or leptykurtic that depending on value of θ.
c) is always negatively skewed and platykurtic
d) is always symmetric but its kurtosis depends on value of θ
30. If $X \sim G(\theta, \mathrm{n})$ then measure of kurtosis β_{2} of X is \qquad
a) function of n only
b) function of θ only
c)function of both n and θ
d) independent both θ and n
31. Assume that X_{1} and X_{2} are independent random variable such that $X_{1} \sim G(6,9), X_{2} \sim G(6,11)$ then distribution of $X_{1}+X_{2}$ is \qquad
a) $\mathrm{G}(10,6)$
b) $G(6,20)$
c) $\mathrm{G}(20,6)$
d) $\mathrm{G}(12,20)$
32. $\mathrm{X} \sim G\left(\frac{1}{2}, 1\right)$ then probability distribution of $\frac{X}{2}$ is \qquad
a) $G\left(\frac{1}{2}, \frac{1}{2}\right)$
b) $G\left(\frac{1}{2}, 1\right)$
c) $G\left(1, \frac{1}{2}\right)$
d) $G(1,1)$
33. If $X \sim \beta_{1}(m, n)$ then which of the following has $\beta_{1}(n, m)$ distribution?
a) $1 / X$
b) 1-X
c) $\mathrm{X} /(1-\mathrm{X})$
d) None of these
34. If $X \sim \beta_{1}(\mathrm{~m}, \mathrm{n})$ with mean 0.25 and variance $=1 / 8$ then values of m and n are respectively
a) $1 / 4,3 / 8$
b) $1 / 8,3 / 8$
c) $1 / 8,3 / 4$
d) $1 / 2,3 / 8$.
35. Let $X \sim \beta_{1}(2,3)$ and $Y=(1-X)$ then-
a) $\mathrm{Y} \sim \beta_{1}(2,3)$
b) $\mathrm{Y} \sim \beta_{2}(2,3)$
c) $\mathrm{Y} \sim \beta_{2}(3,2)$
d) $\mathrm{Y} \sim \beta_{1}(3,2)$
36. If $X \sim \beta_{2}(3,2)$ then $E(1 / X)$ is \qquad
a) 1
b) $3 / 2$
c) $2 / 3$
d) $1 / E(X)$
37. If $\mathrm{X} \sim \beta_{1}(1,2)$, then mean of X is \qquad
a) $1 / 3$
b) $2 / 3$
c) $3 / 4$
d) none of these
38. If $X \sim \beta_{2}(m, n)$, then distribution of $\frac{1}{1+X}$ is \qquad
a) $\beta_{1}(m, n)$
b) $\beta_{2}(m, n)$
c) $\beta_{1}(n, m)$
d) $\beta_{2}(n, m)$
39. If $\mathrm{X} \sim \beta_{2}(m, \mathrm{n})$, then mode of X is \qquad
a) $\frac{m}{n+1}$
b) $\frac{m-1}{n+1}$
c) $\frac{n}{m+1}$
d) none of these
40. If $\mathrm{X} \sim \beta_{1}(\mathrm{~m}, \mathrm{n})$, then it is symmetric at $\mathrm{m}=\mathrm{n}=$ \qquad
a) 0
b) 1
c) 0.5
d) none of these
41. If the random variables $X \sim N(0,1 / 2)$ and $Y \sim N(0,1 / 2)$ are independently distributed. Then $\mathrm{Z}=(\mathrm{X}-\mathrm{Y})^{2}+(\mathrm{X}+\mathrm{Y})^{2}$ is
a) $\mathrm{G}(1 / 2,1)$
b) $G(1,1)$
c) $\mathrm{N}(0,1)$
d) None of these.
42. If random variable X has $\mathrm{N}(\mathrm{a}, \mathrm{b})$ then $\mathrm{P}(\mathrm{X}<\mathrm{a})$ is \qquad
a) 1
b) 0
c) $1 / 2$
d) a / b
43. If X is a random variable having normal distribution with mean 1 and variance 4 , then $\mathrm{P}\left(\mathrm{X}^{2} \leq 2\right)$ is given by
a) $\emptyset\left(\frac{\sqrt{2}-1}{2}\right)-\emptyset\left(\frac{-\sqrt{2}-1}{2}\right)$
b) $\emptyset(\sqrt{2}-1)-\emptyset(-\sqrt{2}-1)$
c) $\emptyset(\sqrt{2})-\emptyset(-\sqrt{2})$
d) $1-[\varnothing(\sqrt{2})-\emptyset(-\sqrt{2})]$
44. Let $X_{i} \sim N(i, 1), i=1,2$. Define the events $A_{i}=\left[i<X_{i}<4\right]$. Which of the following statements is correct?
a) $\mathrm{P}\left(\mathrm{A}_{1}\right)=P\left(\mathrm{~A}_{2}\right)$
b) $\mathrm{P}\left(\mathrm{A}_{1}\right)<\mathrm{P}\left(\mathrm{A}_{2}\right)$
c) $\mathrm{P}\left(\mathrm{A}_{1}\right)>\mathrm{P}\left(\mathrm{A}_{2}\right)$
d) None of these
45. If $\mathrm{X} \sim \mathrm{N}(\mathrm{a}, \mathrm{b})$ then $\mathrm{P}[\mathrm{X}<\mathrm{a}]$ is equal to-
a) 1
b) 0
c) 0.5
d) a/b
46. If X and Y are independently distributed as $N(0,1 / 2)$ and $N(0,1 / 2)$ respectively then distribution of $Z=2(X-Y)^{2}$ is
a) $\operatorname{Gamma}(1 / 2,1)$
b) $\operatorname{Gamma}(1,1)$
c) $\mathrm{N}(0,1)$
d) None of these
47. If $X \sim N(5,9)$ then it is \qquad
a) Mesokurtic and positively skewed
b) Laptykurtic and negatively skewed
c) Platykurtic and symmetric
d) Mesokurtic and symmetric
48. Marks on a Statistics test follow a normal distribution with a mean of 65 and a standard deviation of 5 . Approximately what percentage of the students have scores below 50 ?
a) 0
b) 3%
c) 50%
d) 97%
49. The mean of normal distribution is 50 then its mode is \qquad
a) 25
b) 40
c) 50
d)) none of these
50. Suppose X_{1} and X_{2} are independent standard normal random variates. Pdf of $X_{1}-X_{2}$ is -----
a) $\mathrm{N}(0,1)$
b) $\mathrm{N}(1,0)$
c) $\mathrm{N}(1,1)$
d) $\mathrm{N}(0,2)$
51. If X and Y are i.i.d. $\mathrm{N}\left(\mu, \sigma^{2}\right)$ then distribution of $\mathrm{X}-\mathrm{Y}$ is \qquad
a) Chi-square
b) F
c) Normal
d) None of these
52. If $\mathrm{X} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$ with $\mu_{4}=12$ then the value of σ is \qquad
a) 4
b) 2
c) $\sqrt{2}$
d) 1
53. For normal distribution Q.D., M.D. \& S.D. are in the ratio \qquad
a) $10: 12: 15$
b) $15: 12: 10$
c) $12: 15: 10$
d) $10: 15: 12$
54. If X has chi-square distribution with 8 d.f. then its mode is \qquad
a) 3
b) 4
c) 5
d) 6
55. If X has chi-square distribution with 10 d.f. then its variance is \qquad
a) 10
b) 20
c) 100
d) $\sqrt{10}$
56. Let $X_{i} \sim N(0,1), i=1,2$. Then Pdf of $\frac{\left(X_{1}-X_{2}\right)^{2}}{2}$ is -----
a) $\chi_{(1)}^{2}$
b) $\chi_{(2)}^{2}$
c) $\mathrm{N}(0,1)$
d) $\mathrm{N}(0,2)$
57. If $X \sim N(0,1)$ then the distribution of X^{2} is \qquad
a) χ^{2} with 1 d.f.
b) $G\left(\frac{1}{2}, \frac{1}{2}\right)$
c) both (a) and (b)
d) none of these
58. If X has chi- square distribution with mode 12 then its m.g.f. $M_{X}(t)$ is \qquad
a) $(1-2 t)^{-6}$
b) $(1-2 t)^{-12}$
c) $(1-2 t)^{-7}$
d) $(1-2 t)^{-10}$
59. If X has chi- square distribution with mode 13 then its variance is
a) 15
b) 30
c) 26
d) 22
60. If all odd ordered central moments are zero then the distribution may be.
a) normal
b) t
c) normal or t
d) none of these
61. The mean of t-distribution is \qquad
a) 1
b) 0
c) n
d) $2 n$
62. The coefficient of kurtosis γ_{2} for t - distribution with 10 d.f. is
a) 1
b) 2
c) 4
d) 0
63. If X follows F-Distribution with ($6, n$) d.f. with mean 2 then the value of n is- \qquad
a) 2
b) 3
c) 6
d) 4
64. If $\mathrm{X} \sim \mathrm{F}\left(n_{1}, n_{2}\right)$. If $n_{2} \rightarrow \infty$, then $n_{1} X$ has the- \qquad
a) $\mathrm{t}\left(n_{1}\right)$
b) $\mathrm{F}\left(n_{1}, n_{2}\right)$
c) $\chi_{n_{1}}^{2}$
d) F $\left(n_{2}, n_{1}\right)$
65. If $\mathrm{X} \sim \mathrm{F}\left(n_{1}, n_{2}\right)$ then $\mathrm{E}(\mathrm{X})$ is. \qquad
a) $\frac{n_{1}}{n_{2}-2}$
b) $\frac{n_{2}}{n_{1}-2}$
c) $\frac{n_{2}}{n_{2}-2}$
d) $\frac{n_{1}}{n_{1}+n_{2}}$
66. If $\mathrm{X} \sim \mathrm{F}\left(n_{1}, n_{2}\right)$. then $1 / \mathrm{X}$ follows \qquad distribution.
a) $\mathrm{t}\left(n_{1}\right)$
b) F (n_{1}, n_{2})
c) $\chi_{n_{1}}^{2}$
d) $\mathrm{F}\left(n_{2}, n_{1}\right)$
67. F distribution is invented by
a) G. W. Snedecor
b) R.A. Fisher
c) W.S.Gosset
d) None of these
68. If $X \sim t_{(n)}$ then X^{2} follows \qquad distribution.
a) $t_{(n)}$
b) $F(1, n)$
c) $\mathrm{F}(\mathrm{n}, 1)$
d) $\mathrm{F}(1,1)$
69. If $\mathrm{X} \sim \mathrm{N}(0,1)$ and Y follows χ^{2} with 4 d.f. then $\frac{X}{\sqrt{Y / 4}}$ follows --------------- distribution.
a) t
b) F
c) χ^{2}
d) Normal
70. If $\mathrm{X} \sim \mathrm{N}(0,1)$ and Y follows χ^{2} with 4 d.f. then $\frac{X^{2}}{Y / 4}$ follows --------------- distribution.
a) t
b) F
c) χ^{2}
d) Normal

Q2) Attempt any TWO of the following.

1. Define Uniform distribution. Also find its γ_{1} and γ_{2}.
2. If $X \sim U(a, b)$ then find the distributions of \quad i) $(X-a) /(b-a) \& \quad$ ii) $(b-X) /(b-a)$.
3. Define exponential distribution with parameter Θ. Also find its mean and quartiles.
4. Define exponential distribution. Also state and prove its lack of memory property.
5. If $X \sim \operatorname{Exp}(\theta)$ then find its first four cumulant and hence find the γ_{1} and γ_{2}.
6. Define gamma distribution. Also find its mean and variance.
7. If $X \sim \beta_{1}(m, n)$, then find its mean and variance.
8. If $X \sim \beta_{2}(m, n)$, then find its mean and variance.
9. Define beta distribution of first kind and beta distribution of second kind. Also State and prove relation between these two distributions.
10. Find distribution of $\mathrm{X} /(\mathrm{X}+\mathrm{Y})$ if X and Y are independent gamma variates.
11. Find distribution of X / Y if X and Y are independent gamma variates.
12. Find mgf and cgf of normal distribution. Also find first four cumulants.
13. Define Normal distribution also show that its mean and median are equal.
14. Find recurrence relation in terms of even order central moments for Normal distribution.
15. Define Normal distribution. Also find distribution of linear combination of normal variates.
16. Derive pdf of Chi-square distribution.
17. Define χ^{2} distribution and find its coefficient of skewness $\left(\beta_{1}\right) \&$ coefficient of kurtosis $\left(\beta_{2}\right)$.
18. Derive pdf of t - distribution.
19. Find mean and variance of t-distribution.
20. Define t - distribution. Also find its mode.
21. Define t - distribution and find its coefficient of skewness $\left(\beta_{1}\right) \&$ coefficient of kurtosis $\left(\beta_{2}\right)$.
22. Derive pdf of F- distribution.
23. Find mean and variance of F-distribution.
24. Define F- distribution. Also find its mode.
25. Find mean and variance of uniform distribution.
26. If $X \sim U(a, b)$ then find its mgf.
27. If $\mathrm{X} \sim \mathrm{U}(\mathrm{a}, 10)$, such that $\mathrm{P}(3<\mathrm{X}<7)=0.5$ then find ' a '.
28. Find distribution of $(-1 / \theta) \log X$ if $X \sim U(0,1)$.
29. If $X \sim \operatorname{Exp}(\theta)$ then find its median.
30. Find distribution of sum of i.i.d. exponential variates.
31. Define gamma distribution. Also find its mode.
32. State and prove additive property of Gamma distribution.
33. If $\mathrm{X}_{\mathrm{i}} \sim \mathrm{G}(2, \mathrm{i}), \mathrm{i}=1,2,3,4,5,6$ are i.i.d random variates then find $\mathrm{E}(\mathrm{Y}) \& \mathrm{~V}(\mathrm{Y})$, where $Y=\sum_{i=1}^{4} X_{i}$.
34. If $\mathrm{X} \sim \beta_{1}(\mathrm{~m}, \mathrm{n})$, then find its mode.
35. If $X \sim \beta_{1}(\mathrm{~m}, \mathrm{n})$ then show that it is symmetric distribution at $\mathrm{m}=\mathrm{n}$.
36. If $X \sim \beta_{2}(\mathrm{~m}, \mathrm{n})$, then find its mode.
37. If $X \sim \beta_{1}(\mathrm{~m}, \mathrm{n})$ then show that $X /(1-X) \sim \beta_{2}(\mathrm{~m}, \mathrm{n})$.
38. If $\mathrm{X} \sim \beta_{2}(\mathrm{~m}, \mathrm{n})$ then show that $1 /(1+X) \sim \beta_{1}(\mathrm{n}, \mathrm{m})$.
39. Define standard normal distribution and also state properties of normal curve.
40. Define standard normal distribution and also state its mean, variance, median, Q.D., $\mu_{5} \& \gamma_{1}$.
41. Find M.D. about mean of normal distribution.
42. Find Q.D. of normal distribution.
43. Find mgf and cgf of normal distribution.
44. State and prove additive property of normal distribution.
45. If $X \sim N(0,1)$ then find distribution of X^{2}.
46. If $X_{i} \sim N(2, i), i=1,2,3,4,5,6$ are independent random variates then find mode and variance of Y, where $Y=4 X_{2}+2 X_{3}-X_{6}+3$.
47. Find mean and variance of Chi-square distribution.
48. Define Chi-square distribution. Also find its mode.
49. Find mgf and cgf of Chi-square distribution.
50. State and prove additive property of Chi-square distribution.
51. $\mathrm{X} \sim \mathrm{t}_{(\mathrm{n})}$, then with usual notations show that $\mu_{2 r+1}^{\prime}=\mu_{2 r+1}=0 \quad r=0,1,2, \ldots, n$
52. If $X \sim F\left(n_{1}, n_{2}\right)$, then show that $1 / X$ follows $F\left(n_{2}, n_{1}\right)$.
53. If $X_{i} \sim N(0,1), i=1,2,3,4,5$ are independent random variates then find distribution of Y, where

$$
Y=\left(5 X_{2}^{2}\right) /\left(\sum_{i=1}^{5} X_{i}^{2}\right) .
$$

30. State the inter relation between normal, t, F and χ^{2} distributions.
