Laplace Transform

Dr. Shivaji Tate

Departrnent of Matirlerralitics
Kisan Veer Manfaviclyalaya, Wai

The French Newton Pierre-Simon Laplace

- Developed mathematics in astronomy, physics, and statistics
- Began work in calculus which led to the Laplace Transform
- Focused later on celestial mechanics
- One of the first scientists to suggest the existence of black holes

History of the Transform

- Euler began looking at integrals as solutions to differential equations in the mid 1700's:

$$
z(x ; a)=\int_{0}^{x} e^{a t} X(t) d t,
$$

- Lagrange took this a step further while working on probability density functions and looked at forms of the following equation:

- Finally, in 1785 , Laplace began using a transformation to solve equations of finite differences which eventually lead to the current transform

$$
S=A y_{s}+B \Delta y_{s}+C \Delta^{2} y_{s}+\ldots, \quad y_{s}=\int e^{-s x} \phi(x) d x
$$

Definition

- The Laplace transform is a linear operator that switched a function $f(t)$ to $F(s)$.
- Specifically: $F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t$. where: $s=\sigma+i \omega$.
- Go from time argument with real input to a complex angular frequency input which is complex.

Restrictions

- There are two governing factors that determine whether Laplace transforms can be used:
- $f(t)$ must be at least piecewise continuous for $\mathrm{t} \geq 0$
$-|f(t)| \leq M e^{r^{t}}$ where M and y are constants

Continuity

- Since the general form of the Laplace transform is:

it makes sense that $f(t)$ must be at least piecewise continuous for $\mathrm{t} \geq 0$.
- If $f(t)$ were very nasty, the integral would not be computable.

Boundedness

- This criterion also follows directly from the general definition:

- If $f(t)$ is not bounded by Mert then the integral will not converge.

Laplace Transform Theory

-General Theory

$$
F(s)=\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} e^{-s t} f(t) d t
$$

$$
\begin{aligned}
& f(t) \equiv 1 \\
& \mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} 1 d t=\lim _{\tau \rightarrow \infty}\left(\frac{e^{-s t}}{-s} \left\lvert\, \begin{array}{l}
\tau \\
0
\end{array}\right.\right) \\
&=\lim _{\tau \rightarrow \infty}\left(\frac{e^{-s t}}{-s}+\frac{1}{s}\right)=\frac{1}{s}
\end{aligned}
$$

-Convergence

$$
\begin{aligned}
& f(t) \equiv e^{t^{2}} \\
& \mathcal{L}(f(t))=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} e^{-s t} e^{t^{2}} d t=\lim _{\tau \rightarrow \infty} \int_{0}^{\tau} e^{t^{2}-s t} d t=\infty
\end{aligned}
$$

Laplace Transforms

- Some Laplace Transforms
-Wide variety of function can be transformed
-Inverse Transform

$$
\mathcal{L}^{-1}(F(s))=f(t)
$$

- Often requires partial fractions or other manipulation to find a form that is easy to apply the inverse

$f(t)=\mathcal{L}^{-1}\{F(s)\}$	$F(s)=\mathcal{L}\{f(t)\}$
1. 1	$\frac{1}{s}, \quad s>0$
2. $e^{a t}$	$\frac{1}{s-a}, \quad s>a$
3. $t^{n}, \quad n=$ positive integer	$\frac{n!}{s^{n+1}}, \quad s>0$
4. $t^{p}, \quad p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \quad s>0$
5. $\sin a t$	$\frac{a}{s^{2}+a^{2}}, \quad s>0$
6. $\cos a t$	$\frac{s}{s^{2}+a^{2}}, \quad s>0$
7. \sinh at	$\frac{a}{s^{2}-a^{2}}, \quad s>\|a\|$
8. $\cosh a t$	$\frac{s}{s^{2}-a^{2}}, \quad s>\|a\|$
9. $e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
10. $e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
11. $t^{n} e^{a t}, \quad n=$ positive integer	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
12. $u_{c}(t)$	$\frac{e^{-c s}}{s}, \quad s>0$
13. $u_{c}(t) f(t-c)$	$e^{-c s} F(s)$
14. $e^{c t} f(t)$	$F(s-c)$
15. $f(c t)$	$\frac{1}{c} F\left(\frac{s}{c}\right), \quad c>0$
16. $\int_{0}^{t} f(t-\tau) g(\tau) d \tau$	$F(s) G(s)$
17. $\delta(t-c)$	$e^{-c s}$
18. $f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
19. $(-t)^{n} f(t)$	$F^{(n)}(s)$

Laplace Transform for ODEs

-Equation with initial conditions
-Laplace transform is linear
-Apply derivative formula
-Rearrange

$$
\begin{aligned}
& \frac{d^{2} y}{d t^{2}}+y=1, \quad y(0)=y^{\prime}(0)=0 \\
& \mathcal{L}\left(y^{\prime \prime}\right)+\mathcal{L}(y)=\mathcal{L}(1) \\
& s^{2} \mathcal{L}(y)-s y(0)-y^{\prime}(0)+\mathcal{L}(y)=\frac{1}{s}
\end{aligned}
$$

$$
\mathcal{L}(y)=\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}
$$

-Take the inverse

$$
y=1-\cos t
$$

Laplace Transform in PDEs

Laplace transform in two variables (always taken with respect to time variable, t):

Inverse laplace of a 2 dimensional PDE:

Can be used for any dimension PDE:

$$
\mathcal{L}\{u(x, t)\}=U(x, s)=\int_{0}^{\infty} e^{-s t} \frac{d u}{d t} d t
$$

$$
\mathcal{L}^{-1}\{U(x, s)\}=u(x, t)
$$

$\mathcal{L}\{u(x, y, z, t)\}=U(x, y, z, s)$

The Transform reduces dimension by " 1 ":
-ODEs reduce to algebraic equations
-PDEs reduce to either an ODE (if original equation dimension 2) or another PDE (if original equation dimension >2)

Consider the case where:
$\mathrm{u}_{\mathrm{x}}+\mathrm{u}_{\mathrm{t}} \mathrm{t}$ with $\mathrm{u}(\mathrm{x}, 0)=0$ and $\mathrm{u}(0, \mathrm{t})=\mathrm{t}^{2}$ and

Taking the Laplace of the initial equation leaves $\mathrm{U}_{\mathrm{x}}+\mathrm{U}=1 / \mathrm{s}^{2}$ (note that the partials with respect to " x " do not disappear) with boundary condition $\mathrm{U}(0, \mathrm{~s})=2 / \mathrm{s}^{3}$

Solving this as an ODE of variable $x, U(x, s)=c(s) e^{-x}+1 / s^{2}$
Plugging in B.C., $2 / s^{3}=c(s)+1 / s^{2}$ so $c(s)=2 / s^{3}-1 / s^{2}$
$U(x, s)=\left(2 / s^{3}-1 / s^{2}\right) e^{-x}+1 / s^{2}$

Now, we can use the inverse Laplace Transform with respect to s to find $u(x, t)=t^{2} e^{-x}-t e^{-x}+t$

Example Solutions

Diffusion Equation

$u_{t}=k u_{x x}$ in $(0,1)$
Initial Conditions:
$u(0, t)=u(1, t)=1, u(x, 0)=1+\sin (\pi x / l)$
Using $\quad a f(t)+b g(t) \rightarrow a F(s)+b G(s)$
and $\quad d f / d t \rightarrow s F(s)-f(0)$
and noting that the partials with respect to x commute with the transforms with respect to t, the Laplace transform $U(x, s)$ satisfies
$\mathrm{sU}(\mathrm{x}, \mathrm{s})-\mathrm{u}(\mathrm{x}, 0)=\mathrm{kU}_{\mathrm{xx}}(\mathrm{x}, \mathrm{s})$
With $\mathrm{e}^{\mathrm{at}} \rightarrow 1 /(\mathrm{s}-\mathrm{a})$ and $\mathrm{a}=0$, the boundary conditions become $U(0, s)=U(1, s)=1 / s$.

So we have an ODE in the variable x together with some boundary conditions. The solution is then:
$\mathrm{U}(\mathrm{x}, \mathrm{s})=1 / \mathrm{s}+\left(1 /\left(\mathrm{s}+\mathrm{k} \pi^{2} / \mathrm{l}^{2}\right)\right) \sin (\pi \mathrm{x} / \mathrm{l})$
Therefore, when we invert the transform, using the Laplace table:
$u(x, t)=1+e^{-k \pi^{2} t / 1^{2}} \sin (\pi x / 1)$

Wave Equation

$\mathrm{u}_{\mathrm{ti}}=\mathrm{c}^{2} \mathrm{u}_{\mathrm{xx}}$ in $0<\mathrm{x}<\infty$
Initial Conditions:
$\mathrm{u}(0, \mathrm{t})=\mathrm{f}(\mathrm{t}), \mathrm{u}(\mathrm{x}, 0)=\mathrm{u}_{\mathrm{t}}(\mathrm{x}, 0)=0$
For $x \rightarrow \infty$, we assume that $u(x, t) \rightarrow 0$. Because the initial conditions vanish, the Laplace transform satisfies
$s^{2} \mathrm{U}=\mathrm{c}^{2} \mathrm{U}$
$\mathrm{U}(0, \mathrm{~s})=\mathrm{F}(\mathrm{s})$
Solving this ODE, we get
$\mathrm{U}(\mathrm{x}, \mathrm{s})=\mathrm{a}(\mathrm{s}) \mathrm{e}^{-\mathrm{sx} / \mathrm{c}}+\mathrm{b}(\mathrm{s}) \mathrm{e}^{\mathrm{sx} / \mathrm{c}}$
Where $a(s)$ and $b(s)$ are to be determined.
From the assumed property of u, we expect that $U(x, s) \rightarrow 0$ as $x \rightarrow \infty$.
Therefore, $\mathrm{b}(\mathrm{s})=0$. Hence, $\mathrm{U}(\mathrm{x}, \mathrm{s})=\mathrm{F}(\mathrm{s}) \mathrm{e}^{-\mathrm{ss} / \mathrm{c}}$. Now we use $\mathrm{H}(\mathrm{t}-\mathrm{b}) \mathrm{f}(\mathrm{t}-\mathrm{b}) \rightarrow \mathrm{e}^{-\mathrm{bs}} \mathrm{F}(\mathrm{s})$
To get
$u(x, t)=H(t-x / c) f(t-x / c)$.

Real-Life Applications

- Semiconductor mobility
- Call completion in wireless networks
- Vehicle vibrations on compressed rails
- Behavior of magnetic and electric fields above the atmosphere

Ex. Semiconductor Mobility

- Motivation

- semiconductors are commonly made with superlattices having layers of differing compositions
- need to determine properties of carriers in each layer
- concentration of electrons and holes
- mobility of electrons and holes
- conductivity tensor can be related to Laplace transform of electron and hole densities

Notation

- $\mathrm{R}=$ ratio of induced electric field to the product of the current density and the applied magnetic field
- $\rho=$ electrical resistance
- H = magnetic field
- $\mathrm{J}=$ current density
- E = applied electric field
- $n=$ concentration of electrons
- $u=$ mobility

$$
E_{x}=\rho J_{x}-R H J_{y}
$$

$$
E_{y}=R H J_{x}+\rho J_{y}
$$

Equation Manipulation

$$
\begin{array}{ll}
\rho=\frac{1}{n e \mu}, & \sigma_{x x}=\frac{n e \mu}{[1+(\mu H)]^{2}} . \\
R=-\frac{1}{n e} . & \sigma_{x y}=\frac{-n e \mu^{2} H}{[1+(\mu H)]^{2}} .
\end{array}
$$

$$
\begin{aligned}
& J_{x}=\sigma_{x x} E_{x}+\sigma_{x y} E_{y} \\
& J_{y}=-\sigma_{x y} E_{x}+\sigma_{x y} E_{y}
\end{aligned}
$$

Assuming a continuous mobility

 distribution and that $S^{+}(\mu)=k^{+} e \mu p_{\mu}$, $s^{-}(\mu)=k^{-} e \mu n_{\mu}$, it follows:$$
\begin{aligned}
& \sigma_{x x}=\sum_{\mu} \frac{\left(n_{\mu}+p_{\mu}\right) e \mu}{[1+(\mu H)]^{2}}, \\
& \sigma_{x y}=\sum_{\mu} \frac{\left(p_{\mu}-n_{\mu}\right)\left(e \mu^{2} H\right)}{[1+(\mu H)]^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{x x}(H)=\int_{0}^{\infty} \frac{S^{+}(\mu)+S^{-}(\mu)}{1+(\mu H)^{2}} d \mu, \\
& \sigma_{x y}(H)=\int_{0}^{\infty} \frac{\left[S^{+}(\mu)-S^{-}(\mu)\right] \mu H}{1+(\mu H)^{2}} d \mu .
\end{aligned}
$$

Applying the Laplace Transform

$$
\begin{aligned}
& H \sigma_{x x}=\int_{0}^{\infty} e^{-y t}\left[\int_{0}^{\infty}\left(S^{\dagger}+S^{-}\right) \cos (x t) d x\right] d t \\
& \int_{0}^{\infty} e^{-y t} \sin (x t) d t=\frac{x}{x^{2}+y^{2}}, \\
& =\int_{0}^{\infty} e^{-y t}\left[\int_{0}^{\infty} e x\left(p_{x}+n_{x}\right) \cos (x t) d x\right] d t \text {. } \\
& \int_{0}^{\infty} e^{-y t} \cos (x t) d t=\frac{y}{x^{2}+y^{2}} \\
& \text { 二 } \\
& H \sigma_{x y}=\int_{0}^{\infty} e^{-y t}\left[\int_{0}^{\infty}\left(S^{+}-S^{-}\right) \sin (x t) d x\right] d t \\
& =\int_{0}^{\infty} e^{-y t}\left[\int_{0}^{\infty} e x\left(p_{x}-n_{x}\right) \sin (x t) d x\right] d t .
\end{aligned}
$$

Source

Johnson, William B. Transform method for semiconductor mobility, Journal of Applied Physics 99 (2006).

