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The French Newton

Pierre-Simon Laplace

Developed mathematics in 
astronomy, physics, and statistics

Began work in calculus which led 
to the Laplace Transform

Focused later on celestial 
mechanics

One of the first scientists to 
suggest the existence of black 
holes



History of the Transform

Euler began looking at integrals as solutions to differential equations 
in the mid 1700’s:

Lagrange took this a step further while working on probability density 
functions and looked at forms of the following equation:

Finally, in 1785, Laplace began using a transformation to solve 
equations of finite differences which eventually lead to the current 
transform



Definition

The Laplace transform is a linear operator 

that switched a function f(t) to F(s).

Specifically:  

where: 

Go from time argument with real input to a 

complex angular frequency input which is 

complex.



Restrictions

There are two governing factors that 

determine whether Laplace transforms can 

be used:

 f(t) must be at least piecewise continuous for  

t ≥ 0

 |f(t)| ≤ Meγt where M and γ are constants



Since the general form of the Laplace 

transform is:

it makes sense that f(t) must be at least 

piecewise continuous for t ≥ 0.

If f(t) were very nasty, the integral would 

not be computable.

Continuity



Boundedness

This criterion also follows directly from the 

general definition:

If f(t) is not bounded by Meγt then the 

integral will not converge.



Laplace Transform Theory 

•General Theory

•Example

•Convergence



Laplace Transforms

•Some Laplace Transforms

•Wide variety of function can be transformed

•Inverse Transform

•Often requires partial fractions or other 

manipulation to find a form that is easy 

to apply the inverse



Laplace Transform for ODEs

•Equation with initial conditions

•Laplace transform is linear

•Apply derivative formula

•Rearrange

•Take the inverse



Laplace Transform in PDEs

Laplace transform in two variables (always taken 

with respect to time variable, t):

Inverse laplace of a 2 dimensional PDE:

Can be used for any dimension PDE:

•ODEs reduce to algebraic equations

•PDEs reduce to either an ODE (if original equation dimension 2) or 

another PDE (if original equation dimension >2)

The Transform reduces dimension by “1”:



Consider the case where:

ux+ut=t  with u(x,0)=0 and u(0,t)=t2 and 

Taking the Laplace of the initial equation leaves Ux+ U=1/s2 (note that the 

partials with respect to “x” do not disappear) with boundary condition 

U(0,s)=2/s3

Solving this as an ODE of variable x, U(x,s)=c(s)e-x + 1/s2

Plugging in B.C., 2/s3=c(s) + 1/s2  so  c(s)=2/s3 - 1/s2

U(x,s)=(2/s3  - 1/s2) e-x + 1/s2

Now, we can use the inverse Laplace Transform with respect to s to find 

u(x,t)=t2e-x - te-x + t



Example Solutions



Diffusion Equation
ut = kuxx in (0,l)

Initial Conditions:

u(0,t) = u(l,t) = 1,   u(x,0) = 1 + sin(πx/l)

Using af(t) + bg(t)  aF(s) + bG(s)

and df/dt  sF(s) – f(0)

and noting that the partials with respect to x commute with the transforms with 
respect to t, the Laplace transform U(x,s) satisfies

sU(x,s) – u(x,0) = kUxx(x,s)

With eat
 1/(s-a) and a=0,

the boundary conditions become U(0,s) = U(l,s) = 1/s.

So we have an ODE in the variable x together with some boundary conditions.  
The solution is then:

U(x,s) = 1/s + (1/(s+kπ2/l2))sin(πx/l)

Therefore, when we invert the transform, using the Laplace table:

u(x,t) = 1 + e-kπ2t/l2sin(πx/l)



Wave Equation
utt = c2uxx in 0 < x < ∞

Initial Conditions:

u(0,t) = f(t),   u(x,0) = ut(x,0) = 0

For x  ∞, we assume that u(x,t)  0.  Because the initial conditions 
vanish, the Laplace transform satisfies

s2U = c2Uxx

U(0,s) = F(s)

Solving this ODE, we get

U(x,s) = a(s)e-sx/c + b(s)esx/c

Where a(s) and b(s) are to be determined.

From the assumed property of u, we expect that U(x,s)  0 as x  ∞.

Therefore, b(s) = 0.  Hence, U(x,s) = F(s) e-sx/c.  Now we use 

H(t-b)f(t-b)  e-bsF(s)

To get

u(x,t) = H(t – x/c)f(t – x/c).



Real-Life Applications

Semiconductor 

mobility

Call completion in 

wireless networks

Vehicle vibrations on 

compressed rails

Behavior of magnetic 

and electric fields 

above the 

atmosphere



Ex. Semiconductor Mobility

Motivation

 semiconductors are commonly 

made with superlattices having 

layers of differing compositions

 need to determine properties of 

carriers in each layer 

concentration of electrons and 

holes

mobility of electrons and holes 

 conductivity tensor can be related 

to Laplace transform of electron 

and hole densities



Notation

R = ratio of induced electric field to the product of 
the current density and the applied magnetic field

ρ = electrical resistance

H = magnetic field

J = current density

E = applied electric field

n = concentration of electrons

u = mobility



Equation Manipulation

and



Assuming a continuous mobility 

distribution and that                  ,

, it follows:



Applying the Laplace Transform



Johnson, William B. Transform method for 

semiconductor mobility, Journal of Applied 

Physics 99 (2006).
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