

JANATA SHIKSHAN SANSTHA'S KISAN VEER MAHAVIDYALAYA, WAI DEPARTMENT OF CHEMISTRY M.Sc. PART I SEMESTER I PAPER III PHYSICAL CHEMISTRY

Unit I Thermodynamics

Miss. Rajeshwari S. Kamate Assistant Professor Kisan Veer Mahavidyalaya, Wai M.Sc. Physical Chemistry, SET

CONTENT

- Introduction
- The System And The Surrounding
- Types of the System
- Reversible Processes
- Irreversible Processes
- Spontaneous Processes
- Entropy
- Entropy and Second Law of Thermodynamics
- Absolute Entropy and Third Law of Thermodynamics
- Standard Entropies
- Ideal and Non-Ideal Solutions

Introduction

• The branch of science which deals with the quantitative relationship between heat and other forms of energies is called thermodynamics

- For example,
- Chemical energy stored by molecules can be released as heat during chemical reactions when a fuel like methane, cooking gas or coal burns in air.

• The chemical energy used to do mechanical work when a fuel burns in an engine

• The chemical energy used to provide electrical energy through a galvanic cell like dry cell.

• The study of these energy transformations forms the subject matter of thermodynamics

The System And The Surrounding

- The part of universe in which observations are made or which is under investigation is called system.
- Surroundings is the part of universe other than system .
- The surroundings include everything other than the system.
- System and the surroundings together constitute the universe .
- The universe = The system + The surroundings

Types of the System

Open System

• There is exchange of energy and matter between system and surroundings.

- For example. the presence of reactants in an open beaker.
- Here the boundary is an imaginary

Closed System

• There is no exchange of matter, but exchange of energy is possible between system and the surroundings.

• For example, the presence of reactants in a closed vessel made of conducting material.

Isolated System

• There is no exchange of energy and matter between the system and the surroundings

• For example, the presence of reactants in a thermos flask or any other closed insulated vessel

Reversible Processes

- In a reversible process the system changes in such a way that the system and surroundings can be put back in their original states by exactly reversing the process.
- Changes are infinitesimally small in a reversible process.

Irreversible Processes

- Irreversible processes cannot be undone by exactly reversing the change to the system.
- All Spontaneous processes are irreversible.
- All Real processes are irreversible.

Spontaneous Processes

- Spontaneous processes are those that can proceed without any outside intervention.
- The gas in vessel *B* will spontaneously effuse into vessel *A*, but once the gas is in both vessels, it will *not* spontaneously
- Processes that are spontaneous in one direction are nonspontaneous in the reverse direction.
- Processes that are spontaneous at one temperature may be nonspontaneous at other temperatures.
- Above o°C it is spontaneous for ice to melt.
- Below o°C the reverse process is spontaneous.

ENTROPY

Entropy is a measure of the degree of randomness or disorder in the system.

• The greater the disorder in an isolated system, the higher is the entropy.

• Qualitatively, Order of entropy :

Solid(lowest entropy) < Liquid < gas (highest entropy)

- Entropy is a state function and ΔS is independent of path.
- Whenever heat is added to the system, it increases molecular motions causing increased randomness in the system.
- A system at higher temperature has greater randomness in it than one at lower temperature.
- Heat added to a system at lower temperature causes greater randomness than when the same quantity of heat is added to it at higher temperature.

• This suggests that the entropy change is inversely proportional to the temperature.

 ΔS is related with q and T for a reversible reaction as $\Delta S = \frac{q_{rev}}{T}$

• When a system is in equilibrium, the entropy is maximum, and the change in entropy, $\Delta S = 0$.

• Entropy for a spontaneous process increases till it reaches maximum and at equilibrium the change in entropy is zero.

• Since entropy is a state property, we can calculate the change in entropy of a reversible process by Both for reversible and irreversible expansion for an ideal gas, under isothermal conditions, $\Delta U = 0$, but Δ Stotal i.e., Δ Ssys + Δ Ssurr is not zero for irreversible process.

- Thus, ΔU does not discriminate between reversible and irreversible process, whereas ΔS does.
- Δ Stotal > 0 Process is spontaneous
- Δ Stotal < 0 Process is Non-spontaneous
- Δ Stotal = 0 System is in equilibrium
- \bullet $\Delta Ssys$ alone can not decide the spontaneity of the process for closed and open system

Entropy and Second Law of Thermodynamics

- Entropy is the loss of energy available to do work.
- Another form of the second law of thermodynamics states that the total entropy of a system either increases or remains constant; it never decreases.
- Entropy is zero in a reversible process; it increases in an irreversible process.
- Entropy of any isolated system always increases.
- In exothermic reactions heat released by the reaction increases the disorder of the surroundings and overall entropy change is positive which makes the reaction spontaneous.

Absolute Entropy and Third Law of Thermodynamics

- The entropy of any pure crystalline substance approaches zero as the temperature approaches absolute zero. This is called third law of thermodynamics.
- The importance of the third law is that absolute values of entropy of pure substance can be determined.

Standard Entropies

- These are molar entropy values of substances in their standard states.
- Standard entropies tend to increase with increasing molar mass.
- Larger and more complex molecules have greater entropies.

TABLE 19.2	Standard Molar		
Entropies of Selected			
Substances a	t 298 K		

Substance	S°, J/mol-K
Gases	
$H_2(g)$	130.6
$N_2(g)$	191.5
$O_2(g)$	205.0
$H_2O(g)$	188.8
$NH_3(g)$	192.5
$CH_3OH(g)$	237.6
$C_6H_6(g)$	269.2
Liquids	
$H_2O(l)$	69.9
$CH_3OH(l)$	126.8
$C_6H_6(l)$	172.8
Solids	
Li(s)	29.1
Na(s)	51.4
K(s)	64.7
Fe(s)	27.23
$FeCl_3(s)$	142.3
NaCl(s)	72.3

Ideal and Non-Ideal Solutions

Ideal solution	Non-ideal solution
(i) Obey's Raoult's law over the	Does not obey Raoult's law over
entire range of concentration.	the entire range of concentration.
(ii) There is no change in enthalpy	There is change in enthalpy when
when the solution is formed from	the solution is formed from their
their components.	components.
$\Delta H_{mr} = 0$	$\Delta H_{nut} \neq 0$
(iii) There is no change in volume when	There is change in volume when
the solution is formed from their	the solution is formed from their
components.	components.
. ΔV = 0	ΔV _{mu} ≠ 0
(iv) The interactions between the components	The interaction between the
in solution are similar to those in the	components in solution are
pure components.	different from those of the pure
	components.