$\begin{aligned} & \mathrm{Sr} \\ & \mathrm{No} \end{aligned}$	ST-356 Statistical Computing Using R software	ANS
1)	Which of the following is used for Statistical analysis in R language? (A) Studio (B) Studio (C) Heck (D) KStudio	A
2)	How can we define 'undefined value' in R language? (A) Inf (B) Sup (C) Und (D) NaN	D
3)	Version of R released to the public in 2000 was \qquad (A) 1.0 .0 (B) 1.0 .3 (C) 2.0.1 (D) 1.1 .0	A
4)	R runs on the \qquad operating system. (A) Linux (B) Windows (C) Ubuntu (D) Any operating system	D
5)	Elementary commands in R consist of either \qquad or assignments. (A) utilstats (B) language (C) expressions (D) packages	C
6)	Which of the following is a tool to calculate less than cumulative frequencies? (A) Icumsum() (B) mcumsum() (C) cumsum() (D) all of the mentioned	C
7)	Which command is used to compute. $P(X>2) \text { for } X \sim B \quad(n=5, p=0.3) ?$ (A) pbinom $(2,5,0.3)$ (B)1- pbinom($2,5,0.3$) (C) pbinom $(3,5,0.3)$ (D) none of the mentioned	B

8)	What would be the output of the following code? $>\mathrm{n}=1: 3 ; \operatorname{prod}(\mathrm{n})^{*}$ choose $(5,3)$; (A) 10 (B) 20 (C) 60 (D) none of the mentioned	C
9)	The entities that R creates and manipulates are known as \qquad (A) containers (B) tasks (C) objects (D) all of the mentioned	C
10)	What would be the output of the following code? $\begin{aligned} & >x=1: 4 ; y=2: 3 ; \\ & >x+y ; \end{aligned}$ (A) 35 (B)3 557 (C)3 534 (D) none of the mentioned	B
11)	Which of the following is invalid assignment? (A) $>\mathrm{c}(1,2,4)->x$; (B) >assign("x",c(1,2,4)); (C) $>\mathrm{x}=\mathrm{c}(1,2,4)$; (D) none of the mentioned	D
12)	What would be the output of the following code? >m=matrix(0,ncol=3,nrow=2); $>\operatorname{dim}(\mathrm{m})$; (A)3 2 (B) 23 (C)2 2 (D) none of the mentioned	D
13)	Which of the following statement is alternative to:>?rep. (A) help(rep) (B) get(rep) (C) give(rep) (D) none of the mentioned	A
14)	Which of the following statement is alternative to:>?Solve. (A) give(solve) (B)get(solve) (C) help(solve) (D) none of the mentioned	C

15)	System.time function returns an object of class \qquad which contains two useful bits of information. (A) debug_time (B) proc_time (C) process_time (D) procedure_time	B
16)	Elementary commands in R consists of either \qquad or assignments. (A) Utilstats (B)language (C)expressions (D)packages	C
17)	Advanced users can write \qquad code to manipulate R objects directly. (A) C (B) $\mathrm{C}++$ (C) Java (D) none of the mentioned	A
18)	Which of the following function is used for plotting histogram? (A) hist() (B)histog() (C)histg() (D)histo()	A
19)	Which of the following statement finds the maximum for each column? (A) apply ($\mathrm{x}, 2$, max) (B) col.max (x) (C) which.min(x) (D) which.max (x)	A
20)	Which of the following produces the variance covariance matrix? (A) $\operatorname{sd}(x, n a . r m=T R U E)$ (B) $\operatorname{mad}(x$, na.rm=TRUE) (C) fivenum(x, na.rm=TRUE) (D) $\operatorname{var}(\mathrm{x}, \mathrm{na} \cdot \mathrm{rm}=$ TRUE $)$	D
21)	Which of the following code create a n item vector of random deviates? (A) $\times 1<-\mathrm{c}($ snorm(n) $)$ (B) $\mathrm{x} 1<-\mathrm{c}($ pnorm $(\mathrm{n}))$ (C) $\times 1<-\mathrm{c}($ rnorm $(\mathrm{n}))$ (D) $x 1<-c(\operatorname{norm}(n))$	C
22)	\qquad produces bivariate scatterplots of time-series plots. (A) xyplot (B) dotplot (C) barplot (D) bwplot	A

23)	Which of the following functions is typically used to add elements to a plot in the base graphics system? (A) lines() (B) hist() (C) plot() (D) boxplot()	D
24)	Which of the following is an example of a valid graphics device in R? (A) a socket connection (B)a microsoft word document (C) a PDF file (D) a file folder	C
25)	Which of the following functions can be used to finely control the appearance of all lattice plots? (A) $\operatorname{par}()$ (B)print.trellis() (C)splom() (D)trellis.par.set()	D
26)	Which of the following is an example of a vector graphics device in R ? (A) JPEG (B)PNG (C)SVG (D)GIF	C
27)	Which of the following code create n samples of size "size" with probability from the binomial? (A) $\mathrm{z}<$-rinom (n ,size,prob) (B) $z<-$ rbinom (n, size,prob) (C) $z<-$ binom (n, size,prob) (D) $z<-n o m(n$, size,prob)	B
28)	Which of the following code will print NULL? (A) $>\operatorname{args}$ (paste) (B) $>\arg$ (paste) (C) $>\operatorname{args}($ pastebin) (D) $>\arg$ (bin)	A
29)	You can check to see whether an R object is NULL with the \qquad function. (A) is.null() (B) is.nullobj() (C) null() (D) as.nullobj()	A

30)	What will be the output of the following R code snippet? > paste("a", "b", sep = ":") (A) "a+b" (B) "a=b" (C) "a:b" (D) $a * b$	C
31)	The \qquad function returns a list of all the formal arguments of a function. (A) formals() (B) funct() (C) formal() (D) fun()	A
32)	What will be the output of the following R code? $>x<-3$ $>\operatorname{switch}(6,2+2$, mean(1:10), rnorm(5)) (A) 10 (B) 1 (C)NULL (D) 5	C
33)	R has \qquad basic indexing operators. (A) two (B)three (C)four (D)five	B
34)	\qquad initiates an infinite loop right from the start. (A) never (B) repeat (C) break (D) set	B
35)	The syntax of the repeat loop is \qquad (A) rep statement (B) repeat statement (C) repeat else (D) repeat while	B
36)	Which level plotting commands generate figures? (A) High (B) Low (C) Both high and low (D) No levels	A
37)	The size of the margins is controlled by the argument \qquad (A) Mai (B) Sai (C) Lai (D) Jai	A

38)	Axes, axis labels and titles all appear in the \qquad of the figure. (A) Directions (B) Margin labels (C) Margins (D) Widths	C
39)	Which is the alternative way of defining margins? (A) Mar (B) Par (C) Char (D) Nar	A
40)	Which function draws an axis on the current plot? (A) $\operatorname{jar}($) (B) $\operatorname{par}()$ (C) $\operatorname{mar}()$ (D) axis()	D
41)	The corresponding R function for the $P M F$ is \qquad (A) Trinom (B) Dbinorm (C) Dbinom (D) Fnorm	C
42)	The corresponding R function for the CDF is \qquad (A) Dbinom (B) Pbinom (C) Cbinorm (D) Hbinorm	B
43)	Which function is used to simulate discrete uniform random variables? (A) Sample (B) Simple (C) Function (D) Variance	A
44)	The \qquad and \qquad of a discrete random variable is easy to compute at the console. (A) Mean, Variance (B) Variance, Packages (C) Packages, Functions (D) Median, Mode	A
45)	Which of the following is used to plot multiple histograms? (A) multi.plot() (B) multi.hist (C) xyplot.multi() (D) poly()	B

46)	Which of the following gives the summary of values likes mean etc? (A) mean (B) sd (C) describe (D) Im	C
47)	Function used for linear regression in R is \qquad (A) Im(formula, data) (B) Ir (formula, data) (C) Irm(formula, data) (D) linear(formula, data)	A
48)	n syntax of linear model Im(formula, data,...), data refers to \qquad (A) Matrix (B) Vector (C) Array (D) List	B
49)	The cumulative frequency distribution of a categorical variable can be checked using the \qquad function in R language. (A) Sum (B) Cumsum (C) Lumpsum (D) Resum	B
50)	\qquad function generates "n" normal random numbers based on the mean and standard deviation arguments passed to the function. (A) rnorm (B) vnorm (C) knorm (D) Inorm	A

