most equal pro .
£y by the central molecules in the following arrangements :

ONN. NNO NNO - ONN NNO
:NNO: NNO and NNO ONN: NNO
NNO ONN ONN NNO ONN

close to 0K, each molecule can assume two states, so the entropy of a crystal containing N
les (n moles) will be )
| S=kIn2*=nkln2

=R x2.308 log 2

=8.314'x 2.303 x 0.301

=576 JK mol 2
The observed residual entropies of nitrous oxide and carbon monoxide at 0K are close to the

bove calculated value.
¢ The occurrence of residual entropy in ice is also attributed to the moleculardisorder at 0K. In
ice crystals, each water molecules is tetrahedrally co-ordinated to four other water molecules by
ydrogen bonds: The hydrogen atoms of each hydrogen bond can exist in either of two potential

H?residual entropy can be calculated to be 3.4 JK ! mol™L. This is in close agreement with the
* observed value.
In solid hydrogen, disorder exists because of the persis
ited rotationsl states through nuclear spin.

Problem 1 : Calculate the molar residual entropy of a crystal in wh

ich the molecules can adopt 6

| orientations of equal energy at 0K.
Solution: The residual entropy is given by,
S=tlnW=nklnW
where W= number of orieatations

= pumber of configurations =6
n =number of particles =N =1mal -
N k=R =gas constant
=8314 JK mal™
S=Rln6=8314JK " mol™ x2.303 log 6
L 21489 9K mal™
A PARTITION FUNCTION AND THERMODYNAMIC FUNCTIONS
We can utilise partition function and distribution law to find th
thermodynamic functions, as follows :

¢ values of various

(1) Internal Energy, E - ‘ -
The internal energy of a system of n molecules (in excess of that at the absalute zero), is given

by,
E=ngeo+nEy + ngkg + . ME

= Zn,»e‘-

~_ADVANGED PHYSICAL CHEMISTRY . .-

e S ‘

babilities for the two orientations of a nitrous oxide molecule indicateq

' energy minima. This enables the crystal to exist in many configurations at 0K. On this basis, the’

istence of the hydrbgen molecule in

O
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= lf‘

Bl sey et

f
But f= 1o /AT

df 1 ~¢/AT
i

df
ce o~ t/AT 2 pT ==
Ye; e k T 4T
Therefore, combining equations (25) and (26), we get,

nkT® df
f dT

E=nkt?. d1°gf

E=—

For 1 mole, n may be substituted by N (Avogndro's number), therefore,

. dlogf
E_Nk'ﬂ.———dT

—RT® dlogf

=

..jczs)'

(29)

Expressions (23) and (24) give the value of internal energy in terms of partition function. The
average of each molecule, '_

g @logf
e=M' =g

(2) Entropy, S

From equation (13), we have entropy given by,
S nk logf+kPE

Since B= kT , we have

S=nklogf + %—,
From equations (27) and (31), we have,

dlogf
= nhlog f + nkT T

Expression (32) gives the value of entropy in terms of partiﬁon function.

(3) Work Function, A

We know that,
A=E-TS

Substituting the value of § from equation, (31), we have,
A=E- T(nk log 4 T}

=-nkTlog [

. «(30)

[Taking B = 0]

..(31)

432)

-33)
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gesion (33) gives the relation between work function and p

artition function,

dA
ow that, (WJT =P

.

ferentiating equation (33) with respect to volume, at constanf teinpemture,

dA) _ o(dlo
["W']f MT( dﬂr

we have,

RN

fure, P ' - é

dlo
P= nkT('—(?V , (34)
éssion (34) gives the relation between pressure and partition function
t Content, H
H=E+PV :
dlogfy ... (dlog
H=nkT“|—2~ —2
H- zﬂ[ 5 ]+V.nkT( dV’)T
ool (dlogf dlog et
-n}zTLT[ T ]+V( v J
T .
_om|(dlogf) (dlogf
kT L[ Tt H oy VH | .(35)
dT av . .
[As,—TT=dlogT and -‘—,‘=d10gV] | ,
Expression (35) gives the relation between heat content and partition function. :
(6) Free Energy, F t
We know that, . ]
|  F=H-TS {36 |
Substituting the values of H and S from equations (35) and (32) in (36), we get, ' f
_ool(dlogfY (dlogf _ ,dlo i
G=nkT (dlogT]+(dlogV) T|nklog f+nkT iT
A T I
_ ool dlogfY, (dlogf) 1 _edlogf
=nkT (dlogT]+(d logVL } nkTIogf nkT® b
C T(dlogf _
kT ( g7, ogf| | (37
dlogf__,ndlogf
[As - RRT? = =~ kT o T
‘Expression (37) gives the relation between free energy and partition function.
7) Heat Capaclty, C |
We know that, | |
e .
CV”[dT ,

TSRS~ T
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o g FA AL
o s Lor a2, Vil e Ry L
Leaf (GAFZIL O S R X AL NIV RTIRVTRTY TEPY Tomrarva Lot Lo 1
o pel (5 AF22 de |
PR wite R

PE—-

‘ /a Differentiating equation (27) with respect to temperature at constant volume, we
- dE\ d d log []
Y (d’l‘l, dT["w T
| d(gdlo
- e st

Expression (38) gives the relation between heat capacity and p
M MOLAR PARTITION FUNCTION

In the above systems, we considered 1 in )
different energy levels and f represented the molecular partition function. But for large scale
Systems, we have to take quantities in moles, '

Consider a system supposed to consist of a lar
of the substance, In other worg

artition function,

dividual distinguishable particles distributed

: ge number of smaller ones each 'with onemele
s, the individual unit

here is not the molecule but a mole. Let the
tem be El’ Eg, E3, ey E

In each of thege systems, there are N
average energy, E, of such g unit is give

n by,

E:Exﬂ

Ix;

(Avogadro’s number) numb

i» ---, and let there be x such systems in tota],
er of molecules. Hence, the

If Z is the partition function of thege systems, then,

Z=30 E/kT .
Adopting the same procedure as used in deriving equation (30), we get,
E=ppe 4logZ 3 39
dT _ |
The function Z is known as molar partition function. | ]
3 According to equation (28), the energy of a mole is given by,
lé‘ 1. oN
E=Nere S18f 0 dlogsV
: o dT aT
‘: On comparison, this lcads to Z = [l
* .
The other thermodynamie funetions may be written as :
5 . - dlogf _
: (i) G=NkT. u dlog V i log f
i - dlogZ) Y
] kT[(d gy | ~lozZ (40)
T
A S =Nk log f+ Nk 4198/
8 dT
=hlogZ + kT I -..(41)
(iif)

_ dlogf) (dlogf
H =Nt [[d log T) : (d log ‘7]]

i
.!
)
1
i
. !'
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[

dlog 7' * dlogV «{42)

above relations hold good for systems where all the molecules are disti nguishable and can

 encrgy 1cve1§ without any restriction, Thus, the relations would be true in the case of
ol where the different atoms occupy fixéd localised positions in the structure.

If the molecules are indistipg’qishablc, as in the case of a perfect gas, the relation Z = (N

nodification, for we have taken Yoo many possible arrangements of the particles, hence
number of distribution would be much less. The N-particles in a g mole are g
. gms hable and these have N'! permutations among themselves in as many energy lovels,
ce, we should reduce the expression for Z by dividing it by N'L. Therefore, for a perfect gas,
distinguishable particles), the molar partition function, Z in the above three relations should be
ilaced by Z/N | For a perfect gas, therefore, we have, :

() ' S=klpg%+kT2%(log%]

klogZ+ kTi‘g,l-klong (43)

_uml(dlogZ/NY L Z]
(i) G-—kT[ dlogV logN!
T

S dlogV
‘/ A g‘

)I THIRD LAW OF THERMODYNAMICS AND PARTITION FUNCTIONE'

We can express the third law of thermodynamics in terms of partition function. As seen in
preceding chapters we have

AT [ﬁﬁgi] ~logZ +logN!J
: |

TC
Sp-Sp=] “L.dT .(45)

_ . 0 T°
At very low temperatures,

TCV .
Sp-80= Jo o dT; [: Cp=Cy] ...(46)

For 1 moie of a gas, equation (38) becomes, .
Cy=N R d 2 dlogf
aT' |y

N dT
_p @ (redlogf)
"RdT[TZ dT )V

' Sulistifuting this value of Cy in equation (46), we get, |

: TR d (gdlogf
ST-so=j0 ?-ﬁ(ﬂ = )V.dT

By integrating this expression by parts, we get,

‘ST—S(,:RT{M);RJ(M)VH

dT

dT

= o T N
SR SO Y
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From equation (29) at constant volume we have,

" dlogf)
Hence, Sp- som +R I (
or  8p-Sp= —-+R[10gf7' -logfy] -
‘ If temperature independent terms are » introduced i m this equation, we have, e Y
. Sg—Rlogfa=Rlog gy . T

where, g, = statistical weight of the lowest energy state of the System. '

For a perfect crystal at 0K, there is only one arrangement wluf:h' mga'ns go=1. Hence,
Sq=0 which is the third law of thermodynamics. Equation (47) thus becomes,

AT AL A o it

S.T=%‘+R lngT _ ; ---‘48); .

~ In general, we can write,

5= +Rlogf - 49

A £ e, it RALRZA

§

: It has been observed that molecules are
- forms of energy must be taken into account while mentmnmg ‘partition function.
. Consider a system containing N molecules of the same kind

different forms of energy, eg., translational, rotational, vibrational
energy be represented by ¢, r and v... etc

g The allowed energy levels of the t:type ;ifé By €y B oo

PARTITION FUNCTION FOR MOLEGULES WITH DIFFERENT TYPES OF ENERGY |
associated with energy of different types. All these -

CASANIA R LNt

. All these molecules possess b
efc. Let the different types of

The allowed energy levels of the r-tjpe are &, &, &, . ... and so on for other types,

The Boltzmann distributions will be repre§ented by,

Slow 2 WE MabEL

i 3

ISR W
Ni= 1;7 ‘- -c,\/kT AU

t
N/ = ?IY. e /T
r

and } Nf:;v & /AT

. U' ‘ .
where f,, /, and f, are the partition functions corresponding to ¢, r and v types of energy.
The total energy (E,) of the system is given by,

By=Ze, N} +Ze, N ¥ 36, NY + . FilEs
=NkT® = dTloEIHNHa drrogf,um* xogg, S

...NM!Q dT < log (f; . fr fu)
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the nel molecular partition when every molecule is capable of froaly
8 of energy we can assume that, : pable of free

f=fefp A,

fig=3g,. M

As the statistipal weight of each level is unity, the partition function becomes,

fim=Te T )

The translational energyis alSq_quantised, though the difference in the encrgy levels arc'quite
small. A particle would exhibit periodicity in translational motion only due to the impacts on the

walls of the container. Consider a cube of length /. The molecule moving along x-axis will repeat its

motion each time on traversing.a distance of 2!. Then if } is the wavelength associated with the .
- matter wave, we have, :

nk=2l, we
where, n is an integer. B
The translational energy (&) along x-axis is given by,

1 1
. | &=35 mel = o P2 _
where, ¢, 'and p, represent the velocity and momentum of the moving particle.

According to de Broglie, there is associated with any particle of mass m moving with a velocity
¢, in a single direction, a wavelength A. Therefore,

é h -
T =meg =Dy
o
L _ L (RY_ L (%
Hence, %‘—EE{A “om | 2] gmi

Substituting this value of £, in equation (53), we get,
ft = 3 e t/AT 2 h(u’h’/& mi/kT
X,

The energy levels are so closely spaced that the variation of energy may be taken to be
ontinuous and then summation may be replaced by integration, Thus, o

2,2
frog=2e e /AT _ yot-n* K/8 miP\/kT

Ty
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21,2
nh 9 172
¢ =a? or nh=al (8 mkT)
P“.@ 8 mi® kT

dn=+ (8 mhT)2 dg

172
Therefore, fim= @_mm____l I e de

Pyt

_@ m__k_D___m ( } [From integral calculus]

~ gznmkg)l’? !
T h

Similarly, the translational partition function for molecule in three dn'echons %,y and z at
right angles to each other is given by,

s s

ar ygi

f=fiw-frg)-fee .
_ kT2 1 QunkT)V2 .1 (9mmkT)V2 .1

2 h ) h " h
: onmk 3/2
i =W [As lazvolume=V1 ...(54)

In the case of a perfect monoatomic'gas, the molar partitién function,

...

N1 [LM_]
Nl :

or

St kst dne A AL Ll 8Os e
Mwl_-mn--““"‘"

z;( Hzmnk @umk72 v V} : [MSﬁrhgs&;=(ﬂN}.
e

i 3/2 | :
% 4 o9m
: or K logZ N log ———————( kT)a L . ...(55)
! e NE :
. Problem 1 : Calculate the translational partition function for one mole of nitrogen at 2 atmospllm and
i 27°C, ossuming the gas to behave ideally. Gwen that
: N=6023%10%; k= 1.38x 10" erg deg™ mole™; h = 6.624 x 107 erg sec; R = 82.06 c.c. atm deg™ mol
i Solution :  From equation (54), we have,
! QunkDM? v anm”“ RT . .
> PV=RT)
| == 1P J
{ ' 372
{ D331 x = 138 x 1070 x300| %8200 300
3 o 6,023 10
i " (6.624 x 107 x 2
1 1Tx 100 ‘
: Problem 2. : Calculate the trunslational partition function of a melecule of oxygen gas at 1 atm and 398 K
4 moving in a vessel of volume 24.4 dm’,
! Solution :  Translational partition function q; is given by equation (54).
i .
4
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ADVANCED PHYSICAL CHEMISTRY

Ve24ddm’= 24410 wd n= 31416

T=208K, k=138x102% !
h=662x10"% Js

m=5313x 10 kg for 0,

. (2x8.1416 5313 % 107 x 1.38 x 10" x 298)¥? x 24.4 x 10
(6.62x 10}

=428x10%
Therefore, 10® quantum levels are thermally accessible even at room temperature for O molecule.

'm !ntem§l ‘enengmj_a_'mmuatomic gas -
" The mternal energy of a ‘monoatomic gas can be obtained directly, as the rotational and
vibrational energies are absent.
Taking logarithms of equation (54), we get,
—~

PNy
log fi= %log T+ logi—)—al

_ifferentiating this equation with r(sp%ct t(i temperature at constant volume, we get,

dlogf, 3
_dT—£=2_T A A ...(56)
From equation (39), we have,
=
_,0dlogZ dlogf, \.H:
/ g-mﬁ—ﬂ, =NRT*—= ‘
dlo
=RT? ——:“é [Using translational partition function]
daT
E=RT? or=5 BT
[} Entropy of monoatomic gas or vapour [Sackur-Tetrode equation]
From equation (31), we have translational entropy given by,
' E E
St':-.-T-,f+Nklog/',=-2——,‘-+klogZ , P N'Oa Fr= ‘5’3&
3/2
= % R +NE log Q_m_nk_ﬁ_j_lg [From eqn. (55)]
: ) (Neglecting the statistical weight factor)
3/2 5/2
3 S,=Rlog(2mnkT) 3V.e N
' Nh - B
omk 3/2 T5/2_ 5/23
=Rlog(nm ) ‘ [As PV =RT)
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- Rog B [As R =Nk ;

312 ¢,1\512 : ‘
= Rlog 4 S Rlog M+ Rlog T- R og P

On inserting the values of natural constants, we sce that the first term of eavation (57) is
- 2.315 cal deg™

S,=- 2315 +R[%logM+-g-logT-logP]

Equations (57) and (68) are known as Sackur-Tetrode equations. = |
In the above equations (57) and (58) we have not taken the contribution to the partition
function due to the possible electronic state, but we have' considered the concentration of
;.Jranslational energy only. If the former concession is also taken into account then equation (58)
ecomes, -

. {58)

§;=-2315 +R(% logM+-g-log T—-logl’—klcgf;}

where, £, is the electronic factor. ‘

If the pressure P in equation (58) is taken as 1 atm., the entropy is that of the particular
substance behaving as an ideal gas at this pressure, and hence represents the standard entropy, S°.
Equation (58) then.gives the standard molar entropy of the gas in the same units, ie.,
cal. deg™! mole™!, Thus, '

] . . .
- 8%=-2315+R -IogM+—5-log T-logP+logf, ..(59)
‘e 3 4 ‘
Problem 1 : Calculate the entropy change of ‘oﬁe mole of helium when it is hieated from 300K to GOOK at
constant pressure. .
VI 0 52
Solution : S=R bg[ﬂ’;?m—h&f)— ) 1‘"‘]: R og AT
9, 3/2 ék 5/2
A= —
where, N3
Now, Sgo0 = 1t log (A. 600°'

Sa0= R log (A. 300°'%)
5/2
(600
AS=Rlog (300)

5
4

5 X 1.08 % 2.303 logy, 2 = 3.43 cal deg™ mole™

/PARTITION FUNCTION FOR DIATOMIC MOLECULES

/

? 11 Rotational partition function

i

3

+ Jth quantum level is givea by,

4

" The partition function for rotational encrgy of a diatomic molecule is given by,
A AL ...(60)

From quantum mechanical principles, the rotational energy (¢,) for a diatomic molecule at the

3
i

e s e At o
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e, 1= moment of inertia= wr,
-

4 axis of rotation is defined by two coordinates, which means that there are two rotational
ogrees of freedom. Each quantum level of rotation will bring in two possible modes of distribution

¢ rotational energy. Thus, the statistical weight factor in the. rotational level J is given by
o/ + 1). Hence, introducing the aboye arguments, we have from equation (44),

f=5(2d +1). eV + D8 T

- h2
E, "‘J(J"‘ 1) T
8 nét

Since the levels are closely spaced, the summation can be réplaced by integration. Therefore,
. R
82 LET.dJ

f’,=f: @J+e /D

=j: @J+1)e OB g | ...(61)
h?
_ | 82 I kT
Suppose G =J (J + 1). On differentiating it we get,
dG=@2J+1)dJ |
Hence, equation (61) becomes,

where, B=

%
f,.=j: Shac

1 8n*IkT
| ol
The value of‘ fris val_id for heteronuclear molecules like NO, HCI etc., whereas in the case of
homonuclear molecules like Og, Ny etc, where the molecule when reversed, becomes
indistinguishable from initial state, the partition function ‘is to be divided by the number of
symmetry viz., 2. Therefore,

_8nlIRT
fr" 2}12

In general, when the symmetry number is o, the partition function is given by,

P _BRIRT
" _oh?

jC]::qq,at:ian (62) holds good for diatomic molecules, other than hydrogen and deuterium)For
polyatomic molecules, the principles involved in the evaluation of the partition function arc quite
similar to those described for diatomic molecules, It is, however, supposed that ground state of the
polyatomic molecule consists of a single electronic level, and that excited states make no
contribution to the total partition function. At all reasonable temperatures, the rotational levels of
molec}xle containing more than two atoms are occupied sufficiently for the behaviour to be virtually
classical in character{Assuming the molecule to behave like a rigid rotator, the rotational partition
fqnction, excluding the nuclear spin faclor, for a non-linear molecule is given by,)

..(62)

R ittt S NS 1 o YO ST I T am e
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112,312
fr_;anz(anSABC) (kT) ﬁ

oh?

3

where, A, B and C ave the moments of inertia of the molecule with respect to three perpendicul.

axes. For some molecules, e g., NHg, PClg, CHyCl, etc., two of the three moments ofmerha m
equal.

Table-1. Moments of inertia of polyatomlc molec':igles

] Molecule Moment of Inertia
g coy 719

Ny 0" 66.9
CaHy' 23.
CH,4 : : 527
cCl 5.20
H20 1.02, 1.90, 2.25 x 1070
HaS 2.68, 3.08, 5.76 x 107 : 5
NIy | 2.78, 278, 4.33 x 169 _ }
cHsal 5.46, 614, 61.4 x 104

For sphericalfy symmetrical molecule, eg., CHy, CCl4 etc., the values of A, B and C are equal. Ifthe :

non-linear molecule is planar, eg., CgHeg, Hy0 ete.cthe sum of two of the moments of merhn is ,
equal to the third, ie, A +B=C. . i
Problem 1 :

s

Calculate the ratational partition function of Hy at 0°C. Given that :

iy beae -

k=138x107¢ erg deg" mole™ : h = 6.624 x 1077 erg sec.;

R = 0206 cc. nt.m.'deg‘l mole;o=2;I=0459 x 107 g cmZ
Solution :  From equation (62), we have,

PLL (3.14 x 0.459 x 10" % 1.38 x 107 973
T 2x(6.624x 107y

= 1.554.

11 g e s Sl s ey 3,

Problem 2 : Calculate the munionn.l partition function for hydrogen molecule at SOOK. Moment of inexrtia
of hydrogen molecule is 4.59 x 107 kg m®, symmetry number o =2.

Solution :  The rotational partition function is :

q,= 8 1 kT/ ah?

_ 5 3.1416 (459 x 10 kg m?) (1.98 x 10 JKY) x 30 K : ‘ ‘
2 (6.62 x 107 Js)* k

LR |

P , =171

e

7
fgg\fxbmﬁonal partition function -
The partition function for vibrational energy of a diatomic molecule is given by,

fv e, eI RT
: As the statnstxcal wesght of ench vibrational level is unity, we have, v :
b o f=Ie W AT ..(63)
t o

At the ath quantum levol the vxbratxonal energy of a diatomic molecule is gwen by,

s,




T ADVANCED PHYSICAL CHEMISTRY
1
gy = (n + ~2—] hv

shere V= fundamental ﬁ‘equency of vibration,
n=an integer, 0, 1,2, 8 ... etc.
Therefore, from equation (63), we have

fo=2 e 4 Xdhy / kT
0

=g UDhv ! kT (L4eghvikT, - WLy il VIRT.
= o (/D] kT [1-egbhv! k-1

...(64)
'%QA (-t apempey oy yoix, .
The quantity hv/T is very small and as a first approximation,

fv =(1-¢ hy /kT)-l

1

- (he value of v is equal to ¢ w, where ¢ is the velocity of light and @ cm™ is the vibration
frequency in wave number of the given oscillator. Hence,,

f,= ( 1-gheuw /[eT)“l

-1
=(1- M) " g b / AT = 14300 / T
~ Table-2. Vibration frequencies of diatomic molecules

iﬂolecnle wem™ Moleculc wem’! 7

et 2 ri s sy

H, 4405 ; HCL i 2989
D, 3119 ‘ HBr - 2650
0, : 1580 HF . 4141
N, 2360 HI 2309
- Clp 565 - Co ‘ 2168
Bry 323 OH 3728
Iy : ‘ 214 : 'NO 1907

Problem 1. Calculate the vibrational partition function of molecular hydrogen at 300K, assuming it to be
harmonic oscillator. Given that w = 4405 ¢m™. -

Salution:  Wa have, fo= (i - ¢ 90Tyl

=(1- g MOXMOS /0T () 2L paan

[Ill] Electronic partition function
Many mongatomic as.well as polyatomic molecules have multiple electronic ground states. In

other words, in their normal states.there.are two.or more different clecronic Jevels with energies \
so_close together that they may be considered.as a_single level with a statistical weight Tactor

greater than unity, In addition to this, there may be some excited électronic states whose energy s
‘may be considerably greater than that of the ground states. As'we increase the temperature, such '

excited states become more and ifiore Cciipicd. Hence, electronic partition function is greater than

Q@Q‘%‘gd varies with femperaliire. The statistical weight factor [or cach electronic Tevel, normal
or excited s equal o weight factar for each electronic level, norial oF itited & squal 1o (3 7 1),
where j is the resultant quantum number of the atom in the given state. Hence, the electronic
partition function (f,) is given by, 0 R

. : S .

-y

fo=Z(2+ 1)/ T | l\

RO S+ NS SRy S VU
Tep an RO Bk SRR ALY . ® ‘"""‘“,““‘::"f‘"j;f;r‘.-:'if.‘l- e .
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where, €, is the energy of the clectronic staie in excess of the lowest state, i.c., the ground stat%
the ground state, £,=0, therefore, ¢~ -t/ kT becomes unity.

Tor helium, neon etc. and mercury, the value of j in the lowest energy state is zero, he |
(2 + 1) becomes unity smce no higher or exmted level is requlred therefore, f, becomes unity and

so can be disregarded.

For diatomic molecules and other atoms, one or more electronic states above the ground state

arc considerably occupied even at normal temperatures and so the appropriate terms must be
included in the partition function. For example, in the lowest state of chlorine atom, i.e., when
g, =0;j= :13’,'2, not very far above this is another state where j = 1/2. Thus, the value of f, is given
be :

= [2x3+1) -0 /KT (2x§2_+1}e—ellkT=4+2e-ellkT

where, £; is the electronic energy of the upper level in excess of the value in the ground state.

e

At mgher temperétures other terms for g’m-,, el%"rg rie 1e"els have o] be cm_\.SlderedN T s

e i e

According to quantum theory, the energy, € _vorresponding to a frequency of vem: em! s
represented by,

e=vhe

where % is Planck’s constant and ¢ js the velocity of light. For chlorine, it has been found from
the spectrum ‘of atomic chlorine, that the separation of two lines frequencies in wave numbers

differ by 881 cm™ L. Substituting these assumptmns we get,
: f,=4+2¢~88Lhv IkT

=4 49071268/ T

Problem 1. Calculate the electronic partition function of atomic chlorine at 300 K.
Solulion :  We know that, f, =4 + Q¢ 128 IT

=44 27128700 _ 4029

(iv] Complete partition function
The complete partition function of a diatomic molecule is expressed as,

f=fxfrxf
_@mmk N2 Ve BﬂZIkT oV IkT( __e-hvlk'l')"1
Nh3 " oh? :
tational ener .
] R’I(.‘)hae rotational Sg\crgy of a diatomic molecule is given by,
dlogf,
= 2 2L
E, = NET daT
=Nk’1‘2&%log(8n7'1leoh2)
| = NRT =RT ...(65)

[V1] Vibrational energy
The vibrational cnergy of a dmtomxc taolecule is given by,

by e i 4+ s e e S 15 2

[ N T
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dlogf g
g 4 log ‘
E‘,=NkT2---!=NkT2—é-[e

% Ay -1
aT = hv/ﬁhT(lme../.v“T):}
N?w+ ehvikT
== v
M

J I Total energy
The total internal energy is given by,

.EzEt'l'Er"' :V

-hv/kT
3RreRr e MY oy

2 kT 1-ghv/AT
_ 5 Nhv e hvilkT
-:'Q‘RT+-%—T—-{-NIIV.—*——————1 -e—h VAT
[Vill} Rotational entropy : _ . _fg
From equation (31) we have, ’ '3
E,
) - S,=—+nklogf,
LR |
) S S,=R+NKlog8n2,IkT:R,logsnzlkTe
; . 0”12 0'/12
8n21hT
=R|1+log——=—
[ + 0og th J ‘

=R (1+log8+2logn+logl+logk +log T-logo-2log )
Substituting the values of 7, A, 2 and R in the above equation, we get,
S, =4.576 (log I + log T - log o + 36.82)
For a non-linear molecule, the rotational entropy i
proceeding in the same way as above, :

vSrzgR+Rlog8n2(8n3ABC)2(k T)3/2

..(67)
s given by the following relation, after

.(66)

o h? A
. 3 y
For a nop-linear molecule, £, =§RT 5 37
F
Extracting the constants and converting the logarithms, in the usual manner, we sec that, 1 \l
1 3 : Mo
Sp=4.576 (5 log ABC + 3 logT-logo+ 58.51] ...(68) {
Problem 1 : Calculate the rotational entropy of CO at 26°C, if 1=1448 x10 g cm™? and ¢=1. l
Solution: From equation (67), we have, \
8, =4.576 [(log 14.48 x 10™) + log 298 - 1 + 38.82].
=11.24 cal deg.™ mole™. .
Problem2: Calculate the rotational contribution to the molar catropy of ammonia at 25°C, if the
momcnts of inertia are 2.78 x 107%°, 278  10° and 4.33 x 1074 gm.cem”

2» Symmetry number = 3. ?
Solutlon:  From equation (68), we have,

T e e

Ck

(i
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S, = 4576112 . 1og (218 X 10° x 218 1070 x 4.33 % 1079 |
+3/2. lng’298—log3+§$.§

=11.6 cal deg"1 mole™

(i) Vibrational emropbl
_ Ey
We know that, | Sy= Tt nk log fv

Nhv  Nhy ¢ hv/rT hv /BTy 69

or SV.= kT2+ T 1~_e_hv”‘,1.+Nklog(l—-e‘

Problem 1: Calculate the total standard entropy of nitrogen gas at 25°C. Giwn that:
Vibrational frequency = 2360 cm’}; Moment of inertia =13.9x 10710 g cm 2,
Solution:  Since the ground stale of molecular nitrogen is a singlet level, f; is unity, and the molecular weight being

28, the combined translational and electronic entropy, the latter being actually zero, is given by equation (43.3) as,
S0 =2.315+1.98 [% log 28 + % log 298}

= 35.9 cal. deg™ mole™!

The vibraticnal frequency is 2360 em™! and hence ic w/kT is 11.4. Insertion of thxs result in equation (60.3) gives a -

value for Sy that is negligibly small. The vibrational contribution to the entropy of melecular nitrogen at 25°C may thus
be taken as zero. ' :

The rotational entropy (S;) is given by equation (67) taking o =2; as the nitrogen molecule is symmetrical.
S, = 4.576 [log 13.9 % 10™ + log 208 - log 2 + 38.82)
= 9.8 cal. deg™ mola™
. The total standard entropy =35.9 + 9.8

‘ = 46.7 cal. deg™* mole™ .
Problem 2 : Calculate the vibrational contributions to I, S, Cvand G for Oz(g) at 25°C. The vibrational
frequeney B =1580.2 cm™ ; ’ ' -
Solution:  Firstly, we will calculate the value of x.

x=hw/h=hcw/k

I = 6,626 x 1073 Js, ¢ = 2.998 x 10° ros™
D= 15802 crn™ = 1580.2x 10° m™

k = 13806 x 1072 3K

(6.620 % 10° Juy2.098 % 10° ms™'X1580.2 10°m™)
o - g
1.3806 x 10™ JK°

= 2273.64 K

2973.64 K/208 K™
exp (22?3&4.’298) -1

Por 1 mole of gos, 11, =8.314 JK mol™ x 298 K

=9.18 J mol™ = 0,000 kJ mol™ _

Y NN 1111V N PO (2
8,=8.314 JK mal [exp(2273.64/298)-1 In {1 ~exp 298 |

= 0.036 JE mol™

wey g W

amwres s
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G0=H°~ TS‘,
2018 J mol™ -~ 298 K x 0.035 JK! mol”! .
==1264 mul" ' ' [ g

CONSTANT AND PARTITION FuNCTION P asigmert

the value of equilibrium constant (K) of a reaction in terms of partition

QUILIBRIUM

o will now express
tion. We know that,

dlo
dT

of the N molecules, while E is the total energy of the same

E-Ey=RT*

shere Eq is the zero point energy

polecular species.
Gince the total internal energy of an ideal gas is independent of the pressure al a given
temperature, the values E and B can be replaced by their standard state values E° and £°g,,

respectively.
Thus, g pop=rr? B0

E°=E°0+1-?T2gfl?3‘%ﬁ i

e alio knowihat, 7. GoERFPP-TS _E+RT-TS

}' G ;EOQthogziv S S ...(70)

o

_ If the pressure of the gas is unity, the value of G and f
! yalues G° and f°, respectively. Thus, equation (70) becomes,
£

G° =E°0 ~RTlog N

VY

, Go - E° o
- T 0 =RTngL e o e e k:)}

i
i
can be replaced by their standard S
|
: %
3
: 3
: 1 -] l
or . N \k
' The left hand side is known as free energy function of the substance. 4
Velnowthat, | HEE+PVEERRT o o . 1)
When the substance is in its gtandard state, then equation (72) becomes at 0K, |
, Hoy=E% JAs T=0] ' :
Substituting this value of E% in equation (71), we get, \
G-Hy o, f° o '
SRl B ) \
— [e=m .-
The quantity |-~ is also known as free energy function of the substance.

_-..—'-’——“'

Consider the gaseous reaction :
IL+mM+nN+ ..‘\_—-_—:_5pP+qQ+rR+

in which; :
AG°=(pG°p+qG°Q+rG°n+...)-(IG°L+mG°M+nG°N+...) 14 »:..»

P g -
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If equation,,?d) is applied to the substances LM,.... and P, Q ete., we get,

/ f
&S) GnI' = HOQL -RT ]0g “N‘l"'

Q° =, —rrleg P
G =My~ RT g - N

A GONZHDQN—RTIOg%I:

G°p=H°0p-RT log %’B
G°g=H°yp~RT logf?‘2
G°p = Hoop —RTlong

N
Substituﬁng these values in equation (74) we get,@

. . fop fo ’ ) °
AG -L[p [H or—RT log T\[—)+q(H°OQ‘RTIOg_ﬁQ"JJ”(HDQR'“RTIOgIIVR)‘L .

'fOL f° . . °
~[l (H“QL‘—RTlog7J+m{H"QM—RTIOg‘“Nﬂ +”’(H°0N"RT1°E%N)'_P-.-
= [(PHOOP + (?Hoo > +TH°0R + ... ) - (lHo

J

oLt m.HDQA[ +_le°QN+ ...)]

~R1g LN GNE oy ..
Og o l o 2 :
- L/NY - (F o/ NY™. (Fo/NYR '
(/NP . (Fg/NY . (Fop/NY ... |

/N oMM (oY
We have, - AG"’:-—RT long

= J.OG - RT Io

g

or log K, =~ =~ G
B ’ o / (f° /. q_ [} /. R7.
or log K, = == | A - RT log L7 N),p ({Q N) 2/
FL/NY . (y/N) -(F°N/NY
¥ ~—~A~I£)9+.Iogﬁ DP/NY-VOQ/N)q-UOR/N)R

BT o NY N oy

g, LY QY e

- (f°/N)l-(f°u/N)"‘-(f°N/I\')"<..

This is the expression relating the equilibrium constant in terms of partition function.
E HE-AT CAPACITY OF SOLIDS AND PARTITION FUNCTION

The atoms in the crystalline solids ure arranged in one set pattern and, therefore, havernly
vikrational motion, the electronic levels are assumed to be unexcited, For a single atom, there are

or

x ¢~ (MC)/RT T @)
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