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Chapter 5 

Ratio and Product Methods of Estimation 

An important objective in any statistical estimation procedure is to obtain the estimators of parameters of 

interest with more precision. It is also well understood that incorporation of more information in the 

estimation procedure yields better estimators, provided the information is valid and proper. Use of such 

auxiliary information is made through the ratio method of estimation to obtain an improved estimator of 

the population mean. In ratio method of estimation, auxiliary information on a variable is available, which 

is linearly related to the variable under study and is utilized to estimate the population mean. 

 

Let Y  be the variable under study and X  be an auxiliary variable which is correlated with Y . The 

observations ix  on X  and iy  on Y  are obtained for each sampling unit. The population mean X  of X  

(or equivalently the population total )totX  must be known. For example, 'ix s  may be the values of 'iy s  

from 

- some earlier completed census, 

- some earlier surveys, 

- some characteristic on which it is easy to obtain information etc. 

 

For example, if iy  is the quantity of fruits produced in the ith plot, then ix  can be the area of ith plot or the 

production of fruit in the same plot in the previous year. 

 

Let 1 1 2 2( , ),( , ),..., ( , )n nx y x y x y  be the random sample of size n on the paired variable (X, Y) drawn, 

preferably by SRSWOR, from a population of size N. The ratio estimate of the population mean Y  is  

 ˆ ˆ
R

y
Y X RX

x
   

assuming the population mean X  is known. The ratio estimator of population total 
1

N

tot i

i

Y Y


  is 

 ( )
ˆ tot
R tot tot

tot

y
Y X

x
   

where 
1

N

tot i

i

X X


  is the population total of X which is assumed to be known, 
1

n

tot i

i

y y


  and 
1

n

tot i

i

x x


  

are the sample totals of Y and X respectively. The ( )
ˆ
R totY  can be equivalently expressed as 

 
( )

ˆ

ˆ .
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Looking at the structure of ratio estimators, note that the ratio method estimates the relative change tot

tot

Y

X
 

that occurred after ( , )i ix y  were observed. It is clear that if the variation among the values of i

i

y

x
 and is 

nearly same for all i = 1,2,...,n then values of tot

tot

y

x
 (or equivalently 

y

x
) vary little from sample to sample 

and the ratio estimate will be of high precision. 

 

Bias and mean squared error of ratio estimator: 

Assume that the random sample ( , ), 1,2,...,i ix y i n  is drawn by SRSWOR and population mean X  is 

known. Then 

 1

1ˆ( )

 (in general).

N

n

i
R

i i

y
E Y X

N x

n

Y

 
 
 




 
 
 




 

Moreover, it is difficult to find the exact expression for 
2

2
and

y y
E E

x x

  
  

   
. So we approximate them and 

proceed as follows: 

Let 
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Since SRSWOR is being followed, so 
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1
where , ( ) and

1

N
Y

Y i Y

i

SN n
f S Y Y C

N N Y


   


 is the coefficient of variation related to Y. 
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Similarly, 

2 2

1
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f
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XY n

f
S S
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where X
X

S
C

X
  is the coefficient of variation related to X and   is the population correlation coefficient 

between X and Y. 

 

Writing 
ˆ
RY  in terms of ' ,s  we get 

 0

1

1

0 1

ˆ

(1 )

(1 )

(1 )(1 )

R

y
Y X

x

Y
X

X

Y





  








  

 

 

Assuming 1 1,   the term 
1

1(1 )   may be expanded as an infinite series and it would be convergent. 

Such an assumption means that 1,
x X

X


  i.e., a possible estimate x  of the population mean X  lies 

between 0 and 2 X . This is likely to hold if the variation in x  is not large. In order to ensure that variation 

in x  is small, assume that the sample size n  is fairly large. With this assumption,  

2

0 1 1

2

0 1 1 1 0

ˆ (1 )(1 ...)

(1 ...).

RY Y

Y

  

    

    

     
 

 

So the estimation error of 
ˆ
RY  is 

2

0 1 1 1 0

ˆ ( ...).RY Y Y            
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In case, when the sample size is large, then 0 1and   are likely to be small quantities and so the terms 

involving second and higher powers of 0 1and   would be negligibly small. In such a case 

0 1

ˆ ( )

and

ˆ( ) 0.

R

R

Y Y Y

E Y Y

  

 

 

So the ratio estimator is an unbiased estimator of the population mean up to the first order of 

approximation. 

If we assume that only terms of 0 1and   involving powers more than two are negligibly small (which is 

more realistic than assuming that powers more than one are negligibly small), then the estimation error of 

ˆ
RY  can be approximated as  

2

0 1 1 1 0

ˆ ( )RY Y Y        
 

Then the bias of 
ˆ
RY  is given by 

2ˆ( ) 0 0

ˆ ˆ( ) ( ) ( ).

R X X y

R R X X Y

f f
E Y Y Y C C C

n n

f
Bias Y E Y Y YC C C

n





 
     

 

   

 

upto the second order of approximation. The bias generally decreases as the sample size grows large. 

The bias of 
ˆ
RY  is zero, i.e.,  

 

2

1 0 1

2

2

ˆ          ( ) 0

     if  ( ) 0

( ) ( , )
or if 0

1
or if ( ) ( , ) 0

( , )
or if ( ) 0 (assuming 0)

( , )
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( )
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E

Var x Cov x y

X XY

X
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X Y

Cov x y
Var x X

R

Y Cov x y
R
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which is satisfied when the regression line of Y on X passes through the origin. 

Now, to find the mean squared error, consider 

2

2 2 2

0 1 1 1 0

2 2 2

0 1 0 1

ˆ ˆ( ) ( )

( ...)

( 2 ) .

R RMSE Y E Y Y
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Under the assumption 1 1   and the terms of 0 1and   involving powers, more than two are negligibly 

small, 

2 2 2

2
2 2

2ˆ( )

       2

R X Y X Y

X Y X y

f f f
MSE Y Y C C C C

n n n

Y f
C C C C

n





 
   

 

    

 

up to the second-order of approximation. 

 

Efficiency of ratio estimator in comparison to SRSWOR 

Ratio estimator is a better estimate of Y  than sample mean based on SRSWOR if 

2 2 2 2 2

2

ˆ          ( ) ( )

or if ( 2 )

or if 2 0

1
or if .

2

R SRS

X Y X Y Y

X X Y
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Y

MSE Y Var y

f f
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Thus ratio estimator is more efficient than the sample mean based on SRSWOR if 

1
     if   0

2

1
and if   0.

2

X

Y

X

Y

C
R

C

C
R

C





 

  

 

It is clear from this expression that the success of ratio estimator depends on how close is the auxiliary 

information to the variable under study. 

 

Upper limit of ratio estimator: 

Consider 

 

 
ˆ ˆ ˆ( , ) ( ) ( ) ( )
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ˆ ˆ,

ˆ ˆ( ) ( )

ˆ( , )

xR x R

Bias R E R R

Cov R x

X

X

  

 

 

 

 

where ˆ ,R x
  is the correlation between ˆ

ˆ and ; and xR
R x    are the standard errors of ˆ andR x  

respectively. 

Thus 

 

 

ˆ ˆ,

ˆ

ˆ ,

ˆ( )

1 .

xR x R

xR

R x

Bias R
X

X

  

 





 

 

assuming 0.X   Thus 

ˆ

ˆ

ˆ( )
    

ˆ( )
or

x

R

X

R

Bias R

X

Bias R
C











 

where XC  is the coefficient of variation of X. If XC < 0.1, then the bias in R̂  may be safely regarded as 

negligible in relation to the standard error of ˆ .R  

 

Alternative form of MSE ˆ( )RY  

Consider 

2
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The MSE of 
ˆ
RY  has already been derived which is now expressed again as follows: 
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Estimate of ˆ( )RMSE Y  

Let , 1,2,..,i i iU Y RX i N    then MSE of 
ˆ
RY  can be expressed as 

2 2

1

2 2

1
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1

1
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Based on this, a natural estimator of MSE
ˆ( )RY  is 

2

2 2
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2

1
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1
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1
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Based on the expression 

2

1
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( 1)

N

R i i

i
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an estimate of 
ˆ( )RMSE Y  is 

2
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Confidence interval of ratio estimator 

If the sample is large so that the normal approximation is applicable, then the 100(1- )%  confidence 

intervals of Y  and R are 

2 2

2 2

ˆ ˆ ˆ ˆ( ), ( )

and

ˆ ˆ ˆ ˆ( ), ( )

R R R RY Z Var Y Y Z Var Y

R Z Var R R Z Var R

 

 

 
  

 

 
  

 

 

respectively where 
2

Z  is the normal derivate to be chosen for a given value of confidence coefficient 

(1 ).  

If ( , )x y  follows a bivariate normal distribution, then ( )y Rx  is normally distributed. If SRS is followed 

for drawing the sample, then assuming R is known, the statistic  

 
2 2 2( 2 )y x xy

y Rx

N n
s R s R s

Nn




 

 

is approximately N(0,1). 

 

This can also be used for finding confidence limits, see Cochran (1977, Chapter 6, page 156) for more 

details. 

 

Conditions under which the ratio estimate is optimum 

The ratio estimate 
ˆ
RY  is the best linear unbiased estimator of Y  when  

(i) the relationship between iy  and ix  is linear passing through origin., i.e. 

,i i iy x e   

where 'ie s  are independent with ( / ) 0i iE e x   and   is the slope parameter  

(ii) this  line is proportional to ix , i.e. 

 
2( / ) ( )i i i iVar y x E e Cx   

where C is constant. 
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Proof. Consider the linear estimate of   because 
1

ˆ
n

i i

i

y


 where i i iy x e   and i ‘s are constant.  

Then ̂  is unbiased if Y X  as ( ) ( / ).i iE y X E e x    

If n sample values of ix  are kept fixed and then in repeated sampling 

 
1

2 2

1 1

ˆ        ( )

ˆand ( ) ( / )

n
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i

n n

i i i i i

i i

E x

Var Var y x C x

 





 



 



 

 

So 
1

ˆ( ) when 1.
n

i i

i

E x 


   

Consider the minimization of ( / )i iVar y x  subject to the condition for being the unbiased estimator 

1

1
n

i i

i

x


  using the Lagrangian function. Thus the Lagrangian function with Lagrangian multiplier is  

1

2

1

1 1

1

1

1

( / ) 2 ( 1.)

2 ( 1).

Now

0 , 1,2,..,

0 1
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or 1

1
or .

n

i i i i

i

n n
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n
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x
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x
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Thus 

1
i

nx


 and so 1ˆ .

n

i

i

y
y

nx x
  


 

Thus ̂  is not only superior to y  but also the best in the class of linear and unbiased estimators. 
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Alternative approach: 

This result can alternatively be derived as follows: 

The ratio estimator ˆ y
R

x
  is the best linear unbiased estimator of 

Y
R

X
  if the following two 

conditions hold: 

(i) For fixed ,   ( ) ,x E y x  i.e., the line of regression of ony  x  is a straight line passing through 

the origin. 

(ii) For fixed x , ( )  ,  i.e.,  ( ) whereVar x x Var x x    is constant of proportionality. 

 

Proof: Let 
1) 2 1 2( , ,..., ) ' and ( , ,..., ) 'n ny y y y x x x x   be two vectors of observations on  

' and ' .y s x s  Hence for any fixed x , 

 
1 2

( )

( ) diag( , ,..., )n

E y x

Var y x x x







  
 

where 1 2diag( , ,..., )nx x x  is the diagonal matrix with 1 2, ,..., nx x x  as the diagonal elements. 

 

The best linear unbiased estimator of   is obtained by minimizing 

 

2 1

2

1

( ) ' ( )

( )
.

n
i i

i i

S y x y x

y x

x

 









   




 

Solving 

 

2

1

0

ˆ( ) 0
n

i i

i

S

y x











  

 

or ˆ ˆy
R

x
   . 

Thus R̂  is the best linear unbiased estimator of R . Consequently, 
ˆˆ
RRX Y  is the best  

linear unbiased estimator of .Y  
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Ratio estimator in stratified sampling 

Suppose a population of size N is divided into k strata. The objective is to estimate the population mean Y  

using the ratio method of estimation. 

 

In such a situation, a random sample of size in  is being drawn from the ith strata of size iN  on the variable 

under study Y and auxiliary variable X using SRSWOR. 

Let 

ijy  : jth observation on Y from ith strata  

:ijx  jth observation on X from ith strata i =1, 2,…,k; 1,2,..., .ij n   

 

An estimator of Y  based on the philosophy of stratified sampling can be derived in the following two 

possible ways: 

 

1. Separate ratio estimator 

- Employ first the ratio method of estimation separately in each stratum and obtain ratio estimator 

ˆ 1,2,..,
iRY i k  , assuming the stratum mean iX  to be known. 

- Then combine all the estimates using weighted arithmetic mean. 

 

This gives the separate ratio estimator as 

 1

1

ˆ
ˆ

ˆ

i

i

k
i R

Rs

i

k

i R

i

N Y
Y

N

wY













 

 
1

k
i

i i

i i

y
w X

x

  

where 
1

1
:

in

i ij

ji

y y
n 

   sample mean of Y from ith strata 

 
1

1
:

in

i ij

ji

x x
n 

  sample mean of X from ith strata 

 
1

1
:

iN

i ij

ji

X x
N 

  mean of all the X units in ith stratum 

No assumption is made that the true ratio remains constant from stratum to stratum. It depends on 

information on each .iX  
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2. Combined ratio estimator: 

- Find first the stratum mean of ' and 'Y s X s  as 

  
1

1

.

k

st i i

i

k

st i i

i

y w y

x w x













 

- Then define the combined ratio estimator as 

  
ˆ st
Rc

st

y
Y X

x
  

where X  is the population mean of X based on all the 
1

N

i

i

N N


  units. It does not depend on individual 

stratum units. It does not depend on information on each iX  but only on X . 

 

Properties of separate ratio estimator: 

Note that there is an analogy between 
1

k

i i

i

Y wY


  and 
1

.
k

Rs i Ri

i

Y wY


  

We already have derived the approximate bias of ˆ
R

y
Y X

x
  as 

2ˆ( ) ( )R x X Y

Yf
E Y Y C C C

n
   . 

So for 
ˆ
RiY , we can write 

2

1 1

2 2
2 2
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2 2 2 2
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1 1
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1 1
          ( ) , ( ) ,

1 1

i i

i i

i
Ri i i ix i iX iY

i
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i ij i ij

j ji i

iyi i ix
i iy ix

i i i

N N

iy ij i ix ij i

j ji i

f
E Y Y Y C C C

n

Y y X x
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SN n S
f C C

N Y X

S Y Y S X X
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:i correlation coefficient between the observation on X and Y in ith stratum 

:ixC  coefficient of variation of X values in ith sample. 

Thus 

 

1

2

1

2
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1

ˆ ˆ( ) ( )

( )


 

 

Rs Rs

k
i i i

ix ix i iy

i i

Bias Y E Y Y

wY f
C C C

n


 

upto the second order of approximation. 

Assuming finite population correction to be approximately 1, / and , andi ix iy in n k C C   are the same 

for all the strata as ,  and x yC C 
 
respectively, we have  

 2ˆ( ) ( )Rs x x y

k
Bias Y C C C

n
  .  

Thus the bias is negligible when the sample size within each stratum should be sufficiently large and RsY is 

unbiased when .ix iyC C  

Now we derive the approximate MSE of 
ˆ .RsY  We already have derived the MSE of 

ˆ
RY  earlier as 

 

2
2 2

2
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ˆ( ) ( 2 )
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( 1)

R X Y x y

N

i i

i

Y f
MSE Y C C C C
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where .
Y

R
X

  

Thus the MSE of ratio estimate up to the second order of approximation based on ith stratum is 
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2
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and so 
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An estimate of MSE
ˆ( )RsY  can be found by substituting the unbiased estimators of 2 2 2, andiX iY iXYS S S  as 

2 2, andix iy ixys s s , respectively for ith stratum and /i i iR Y X  can be estimated by / .i i ir y x  
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Properties of combined ratio estimator: 

Here 

 1
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It is difficult to find the exact expression of bias and mean squared error of 
ˆ
RcY , so we find their 

approximate expressions. 
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Thus assuming 2 1,   
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Retaining the terms up to order two due to the same reason as in the case of 
ˆ ,RY  
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The approximate bias of 
ˆ
RcY  up to the second-order of approximation is  
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where , i

Y
R

X
  is the correlation coefficient between the observations on andY X  in the ith stratum, 

andix iyC C  are the coefficients of variation of andX Y  respectively in the ith stratum. 

 

The mean squared error upto second order of approximation is  
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An estimate of ( )RcMSE Y  can be obtained by replacing 2 2,   and iX iY iXYS S S  by their unbiased estimators 

2 2,   and ix iy ixys s s  respectively whereas 
Y

R
X

  is replaced by 
y

r
x

 . Thus the following estimate is obtained:
 

  
2

2 2 2

1

( ) 2 .
k

i i
Rc ix iy ixy

i i

w f
MSE Y r s s rs

n

 
   

 
  

 



 

 Sampling Theory| Chapter 5 | Ratio & Product Methods of Estimation | Shalabh, IIT Kanpur 

Page 16 

Comparison of combined and separate ratio estimators 

An obvious question arises that which of the estimates ˆ
RsY  or 

ˆ
RcY  is better. So we compare their MSEs. 

Note that the only difference in the term of these MSEs is due to the form of ratio estimate. It is  

 

ˆ     in  ( )

ˆ    in  ( ).

i
i Rs
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y
R MSE Y

x

Y
R MSE Y

X

 

 

  

Thus 

2
2 2 2

1

2
2 2 2

1

ˆ ˆ( ) ( )

( ) 2( )

( ) 2( )( ) .

Rc Rs

k
i i

i iX i i iX iY

i i

k
i i

i iX i i iX i iX iY

i i

MSE Y MSE Y

w f
R R S R R S S

n

w f
R R S R R R S S S

n









  

 
      

 

 
       

 





    

 

The difference   depends on  

(i) The magnitude of the difference between the strata ratios ( )iR  and whole population ratio (R). 

(ii) The value of 2( )i ix i ix iyR S S S  is usually small and vanishes when the regression line of y on x is 

linear and passes through origin within each stratum. See as follows: 
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which is the estimator of the slope parameter in the regression of y on x in the ith stratum. In 

such a case  
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So unless iR  varies considerably, the use of 
ˆ
RcY  would provide an estimate of Y  with negligible bias and 

precision as good as 
ˆ .RsY  

 If 
ˆ,i RsR R Y  can be more precise but bias may be large. 

 
If 

ˆ,i RcR R Y  can be as precise as 
ˆ
RsY  but its bias will be small. It also does not require knowledge 

of 1 2, ,..., .kX X X
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Ratio estimators with reduced bias: 

The ratio type estimators that are unbiased or have smaller bias than 
( )

ˆˆ ˆ, orR Rc totR Y Y  are useful in sample 

surveys. There are several approaches to derive such estimators. We consider here two such approaches: 

 

1. Unbiased ratio – type estimators: 

Under SRS, the ratio estimator has form 
Y

X
x

 to estimate the population mean Y . As an alternative to 

this, we consider following as an estimator of the population mean 
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Using the result that under SRSWOR, ( , ) XY

N n
Cov x y S
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 , it also follows that 
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Thus using the result that in SRSWOR, ( , ) XY

N n
Cov x y S
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 , and therefore ( , ) ,RX
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The following result helps in obtaining an unbiased estimator of a population mean: 

Since under SRSWOR set up, 
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So an unbiased estimator of the bias in 0

ˆ( ) ( 1)R RXBias Y N S    is obtained as follows: 
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So 

 0 0

0 0

0

0

( 1)ˆ ˆ      ( ) ( ).
( 1)

Thus

ˆ ˆ      ( )

( 1)ˆor ( ) .
( 1)

Thus

( 1) ( 1)ˆ       ( ) ( )
( 1) ( 1)


    



  
  

 
   

 

 
    

 

R R

R R

R

R

n N
Bias Y E Y Y y r x

N n

E Y Bias Y Y

n N
E Y y r x Y

N n

n N n N
Y y r x rX y r x

N n N n

 

is an unbiased estimator of the population mean. 

 

It may noted that such an unbiased estimator cannot be obtained using ˆ
R

y
Y X

x
 because it is not exactly 

unbiased. It is unbiased only up to the first order of approximation. So even if the bias of ˆ
R

y
Y X

x
 upto 

the first order of approximation is used to obtain such an unbiased estimator, the estimator will change for 

higher order of approximations.   

 

2. Jackknife method for obtaining a ratio estimate with lower bias 

Jackknife method is used to get rid of the term of order 1/n from the bias of an estimator. Suppose the  

ˆ( )E R  can be expanded after ignoring finite population correction as 
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Let n = mg and the sample is divided at random into g groups, each of size m. Then 
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 where the 
*  denotes the summation over all values of the sample except the ith group. 

So 
*ˆ
iR  is based on a simple random sample of size m(g - 1),  so we can express 
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Hence the bias of *ˆ ˆ( 1) igR g R  
 

 is of order 
2

1

n
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Now g estimates of this form can be obtained, one estimator for each group. Then the jackknife or 

Quenouille’s estimator is the average of these of estimators 
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Product method of estimation: 

The ratio estimator is more efficient than the sample mean under SRSWOR if 
1

. ,
2

x

y

C

C
   if 0,R   which 

is usually the case. This shows that if auxiliary information is such that 
1

,
2

x

y

C

C
    then we cannot use 

the ratio method of estimation to improve the sample mean as an estimator of the population mean. So 

there is a need for another type of estimator which also makes use of information on auxiliary variable X. 

Product estimator is an attempt in this direction. 

The product estimator of the population mean Y  is defined as 

 
 ˆ .P

y x
Y

X


 

assuming the population mean   to be known X
 

We now derive the bias and variance of 
ˆ .pY  
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(i) Bias of ˆ .pY   

We write ˆ
pY  as 

 0 1

0 1 0 1

 ˆ (1 )(1 )

(1 ).

p

y x
Y Y

X

Y

 

   

   

   

 

Taking expectation, we obtain bias of ˆ
pY  as 
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which shows that bias of 
ˆ

pY  decreases as n  increases. Bias of 
ˆ

pY  can be estimated by 

 ˆ( )p xy

f
Bias Y s

nX
 . 

(ii) MSE of ˆ :pY   

Writing 
ˆ

pY  is terms of 0 1and  , we find that the mean squared error of the product estimator 
ˆ

pY  up to 

second order of approximation is given by 
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Here terms in 1 0( , )   of degrees greater than two are assumed to be negligible. Using the expected values, 

we find that 
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(iii) Estimation of MSE of ˆ
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The mean squared error of 
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(iv) Comparison with SRSWOR:  

From the variances of the sample mean under SRSWOR and the product estimator, we obtain 

 ˆ( ) ( ) (2 ),SRS p X Y X
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n
     

where 2( )SRS Y
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n
 which shows that 

ˆ
pY  is more efficient than the simple mean y  for 
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Multivariate Ratio Estimator 

Let y  be the study variable and 
1 2, ,..., pX X X  be p  auxiliary variables assumed to be corrected with y . 

Further, it is assumed that 
1 2, ,..., pX X X  are independent. Let 1 2, , ,..., pY X X X  be the population means of 

the variables y , 
1 2, ,..., pX X X . We assume that a SRSWOR of size n  is selected from the population of 

N  units. The following notations will be used. 
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where 1,2,..., .i p  Then the multivariate ratio estimator of Y  is given as follows.  
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(i) Bias of the multivariate ratio estimator: 

The approximate bias of 
ˆ
RiY  up to the second order of approximation is 
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(ii) Variance of the multivariate ratio estimator: 

The variance of 
ˆ
RiY  up to the second-order of approximation is given by 
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