
B. Sc. Part-III Semester V

SUBJECT – STATISTICS - XII

DSE-E16: R-Programming and Quality Management

Unit-1: R Programming:

1.1: Introduction :History, Feathers of R, Character sets,

Identifiers: Variable, Constants, Symbolic constant, key words, Data Types and

Data Structure.

Operators: Arithmetic, relational, logical, assignment, increasing, decreasing,

special operators, Character vectors, Input and output functions, Data Import and

Export function, Basic built-in function

1.2: Programming: Algorithm, flow chart, Structure of programme,

Conditional Statements: If, if else, Loops: for, while, Unconditional Statements,

Writing of your own functions, Diagrams and Graphs, Simple programmes on

1) Finding Area of circle.

2) To check whether the given integer is positive or negative.

3) Reverse a given number.

4) To find greatest of three numbers.

5) Find Prime numbers in a given range.

6) To check if number is odd or even.

7) To check leap year.

8) To find sum of first n natural numbers.

9) To find AM, GM, and HM for ungrouped data.

10) To find Mean deviation, Variance, Standard deviation for ungroupeddata.

11) To generate random numbers from discrete distributions.

12) To generate random numbers from continuous distributions.

1.1 : Introduction

History

 R programming language and software environment for statistical analysis,

graphics, representation and reporting. R was initially written by Ross Ihaka and

Robert Gentleman at the Department of Statistics of the University of Auckland in

Auckland, New Zealand. R made its first appearance in 1993.

The core of R is an interpreted computer language which allows branching and

looping as well as modular programming using functions. R allows integration with

the procedures written in the C, C++, .Net, Python or FORTRAN languages for

efficiency.

R is freely available under the GNU General Public License, and pre-compiled

binary versions are provided for various operating systems like Linux, Windows and

Mac. R is free software distributed under a GNU-style copy left, and an official part

of the GNU project called GNU S.

 The first official release came in 1995. The Comprehensive R Archive

Network (CRAN) was officially announced 23 April 1997 with 3 mirrors and 12

contributed packages. The first official “stable beta" version (v1.0) was released

on 29 February 2000.

Features of R

 As stated earlier, R is a programming language and software environment for

statistical analysis, graphics representation and reporting. The following are the

important features of R:

 R is a well-developed, simple and effective programming language which includes

conditionals, loops, user defined recursive functions and input and output facilities.

 R is use large collection of tools of data collection.

 R has an effective data handling and storage facility,

 R provides a suite of operators for calculations on arrays, lists, vectors and

matrices.

 R provides a large, coherent and integrated collection of tools for data analysis.

 R provides graphical facilities for data analysis and display either directly at the

computer or printing at the papers.

https://en.wikipedia.org/wiki/Software_release_life_cycle#BETA

Identifiers

Variables are used to store data, whose value can be changed according to our

need. Unique name given to variable (function and objects as well) is identifier.

 Rules for writing Identifiers

1. Identifiers can be a combination of letters, digits, period (.) and underscore (_).

2. It must start with a letter or a period. If it starts with a period, it cannot be followed

by a digit.

3. Reserved words in R cannot be used as identifiers.

Example:

Valid identifiers

Sum, .fine.with.dot, this_is_acceptable, Number5

Invalid identifiers

tot@l, 5um, _fine, TRUE, .0ne

Below are the list of the identifier to study in that paper

1. Variable

2. Constants

3. Symbolic constant

4. key words

5. Data Types

6. Data Structure.

1. Variable

A variable provides us with named storage that our programs can manipulate.

A variable in R can store an atomic vector, group of atomic vectors or a

combination of many R objects. A valid variable name consists of letters,

numbers and the dot or underline characters. The variable name starts with a

letter or the dot not followed by a number. Variables are used to store dat

Types of variable

1) Boolean Variables: This is the simplest type of variable. It contains a single bit,

and indicate a binary result (0 and 1, yes and no, or true and false).

e.g. a = TRUE
 b = FALSE

2) Integer variables: Numbers with no floating point are called integers. In R
programming, sometimes it is difficult to declare a single integer. In most cases,
try to do so will actually declare a numeric value.

3) Numeric Variables: Numeric variables are used to store numbers. It can contain
floating point numbers.

e.g. a = 1

b = 3.14

4) Characters Variables: Character variables are used to store non-numeric data.

Unlike other programming languages, there are a no differences between

characters and strings in R.

e.g. a a = “x”

 b = “6”

5) String Variables: String variables are those variables which contain one or

more characters.

e.g. x= “abcd2”

 y= “Hello World”

 = “x”

2. Constants

Constants are entities within a program whose value can't be changed. There are 2

basic types of constant. These are numeric constants and character constants.

1) Numeric Constants: numeric constants are the numbers which can be integer,

double or complex. You can check the type of constant through the typeof()

function. Numeric constant suffix with L are the integer type and suffix with i are

called complex type.

e.g. > typeof(10)

 [1] "double"

 > typeof(10L)

 [1] "Integer"

 > typeof(10i)

 [1] "complex"

2) Character Constant: Character constant can be declared using either single

quote (‘ ’) or double quote (“ ”).

e.g. > typeof(“nikita”)

 [1] “character”

 > typeof(‘hello’)

 [1] “character”

3) Built-in Constants: Some of the built-in constants of R along with their values

are shown below:

e.g. > LETTERS

 [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T"

 [21] "U" "V" "W" "X" "Y" "Z"

 > letters

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"

 [21] "u" "v" "w" "x" "y" "z"

 > month.name

 [1] "January" "February" "March" "April" "May" "June"

 [7] "July" "August" "September" "October" "November" "December"

 > month.abb

 [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

 > pi

 [1] 3.141593

3. key words
In programming, a keyword is a word which is reserved by a program because it

has a special meaning. A keyword can be a command or a parameter. Like in C,

C++, Java, there is also a set of keywords in R. A keyword can't be used as a

variable name. Keywords are also called as "reserved names."

There are the following keywords as per ?reserved or help(reserved) command:

if else repeat

while function for

next break TRUE

FALSE NULL Inf

NaN NA NA_integer_

NA_real_ NA_complex_ NA_character_

4. Data Types

In programming languages, we need to use various variables to store various

information. Variables are the reserved memory location to store values. As we

create a variable in our program, some space is reserved in memory.

 In R, there are several data types such as integer, string, etc. The operating

system allocates memory based on the data type of the variable and decides what

can be stored in the reserved memory.

There are the following data types which are used in R programming:

1) Numeric Data Type :
The numeric data type is for numeric values. It is the default data type for
numbers in R.
Examples of numeric values would be 1, 34.5, 3.145, -24, -45.003, etc.

e.g. > num <- 1

 > class(num)

 [1] “numeric”

 > typeof(num)

 [1] “double”

Note: When R stores a number in a variable, it converts the number into a
‘double’ value or a decimal type with at least two decimal places. This means
that a value such as ’1’ is stored as 1.00 with a type of double and a class of
numeric.

2) Integers Data Type :

The Integer data type is used for integer values. To store a value as an
integer, we need to specify it as such. The integer data type is commonly
used for discrete only values like unique ids. We can store as well as convert
a value into an integer type using the as.integer() function.

e.g,

> int <- as.integer(16)
> class(int)
[1] "integer"
> typeof(int)
[1] "integer"
> num=1
> int2 <- as.integer(num)
> int2
[1] 1
> class(int2)
[1] "integer"
> typeof(int2)
[1] "integer”

Note: We can also use the capital ‘L’ notation to denote that a particular

value is of the integer data type.

e.g. > int3 <- 5L

 > class(int3)

 [1] "integer"

 > typeof(int3)

 [1] "integer"

3) Complex Data Type :

The complex data type is to store numbers with an imaginary component.
Examples of complex values would be 1+2i, 3i, 4-5i, -12+6i, etc.

e.g > comp <- 22-6i

 > class(comp)

 [1] "complex"

 > typeof(comp)

 [1] "complex"

4) Logical Data Type :
The logical data type stores logical or boolean values of TRUE or FALSE.

e.g.

> logi <- FALSE

> class(logi)

[1] "logical"

> typeof(logi)

[1] "logical"

5) Character Data Type :

The character data type stores character values or strings. Strings in R can
contain the alphabet, numbers, and symbols. The easiest way to denote that
a value is of character type in R is to wrap the value inside single or double
inverted commas.

e.g.

> char <- "dataflair1234"

> class(char)

[1] "character"

> typeof(char)

[1] "character"

Code :

comp <- 22-6i

int2 <- as.integer(comp)

int2

char2 <- as.character("hello")

char3 <- as.character(comp)

char2

char3

num2 <- as.numeric(int)

num2

int4 <- as.integer(num)

int4

comp2 <- as.complex(num)

comp2

comp2 <- as.complex(num)

char2 <- as.character(num)

5. Data Structure.

A data structure is a particular way of organizing data in a computer so that it
can be used effectively. The idea is to reduce the space and time
complexities of different tasks. Data structures in R programming are tools
for holding multiple values.

R’s base data structures are often organized by their dimensionality (1D, 2D,
or nD) and whether they’re homogeneous (all elements must be of the
identical type) or heterogeneous (the elements are often of various types).
This gives rise to the six data types which are most frequently utilized in data
analysis.

The most essential data structures used in R include:

 Vectors
 Lists
 Data frames
 Matrices
 Arrays
 Factors

a. Vectors
A vector is an ordered collection of basic data types of a given length. The
only key thing here is all the elements of a vector must be of the identical
data type e.g homogeneous data structures. Vectors are one-dimensional
data structures.

e.g. > X = c(1, 3, 5, 7, 8)
 > X
 [1] 1 3 5 7 8
 > length(X)
 [1] 5
 > class(X)
 [1] "numeric"

b. Lists
A list is a generic object consisting of an ordered collection of objects. Lists
are heterogeneous data structures. These are also one-dimensional data
structures. A list can be a list of vectors, list of matrices, a list of characters

and a list of functions and so on.

e.g 1) >X = list(1, 3, 5, 7, 8,"r")

 > X

 [[1]]

 [1] 1

 [[2]]

 [1] 3

 [[3]]

 [1] 5

 [[4]]

 [1] 7

 [[5]]

 [1] 8

 [[6]]

 [1] "r"

 > length(X)

 [1] 6

 > class(X)

 [1] "list"

2) > empId = c(1, 2, 3, 4)

 > empName = c("Debi", "Sandeep", "Subham", "Shiba")

 > numberOfEmp = 4

 > empList = list(empId, empName, numberOfEmp)

 > print(empList)

 [[1]]

 [1] 1 2 3 4

 [[2]]

 [1] "Debi" "Sandeep" "Subham" "Shiba"

 [[3]]

 [1] 4

c. Data frames
Data frames are generic data objects of R which are used to store the

tabular data. Data frames are the foremost popular data objects in R

programming because we are comfortable in seeing the data within the

tabular form. They are two-dimensional, heterogeneous data structures.

These are lists of vectors of equal lengths.

Data frames have the following constraints placed upon them:

 A data-frame must have column names and every row should have a unique
name.

 Each column must have the identical number of items.
 Each item in a single column must be of the same data type.
 Different columns may have different data types.
To create a data frame we use the data.frame() function.

e.g. > Name = c("Amiya", "Raj", "Asish")

 > Language = c("R", "Python", "Java")

 > Age = c(22, 25, 45)

 > df = data.frame(Name, Language, Age)

 > print(df)

Output:

 Name Language Age

1 Amiya R 22

2 Raj Python 25

3 Asish Java 45

d. Matrices

A matrix is a rectangular arrangement of numbers in rows and columns. In a

matrix, as we know rows are the ones that run horizontally and columns are the

ones that run vertically. Matrices are two-dimensional, homogeneous data

structures.

Now, let’s see how to create a matrix in R. To create a matrix in R you need to

use the function called matrix. The arguments to this matrix() are the set of

elements in the vector. You have to pass how many numbers of rows and how

many numbers of columns you want to have in your matrix and this is the

important point you have to remember that by default, matrices are in column-

wise order.

e.g. A = matrix(

 c(1, 2, 3, 4, 5, 6, 7, 8, 9),

 nrow = 3, ncol = 3,

 byrow = TRUE

)

 > print(A)

 Output:

 [,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

e. Arrays

Arrays are the R data objects which store the data in more than two
dimensions. Arrays are n-dimensional data structures. For example, if we
create an array of dimensions (2, 3, 3) then it creates 3 rectangular matrices
each with 2 rows and 3 columns. They are homogeneous data structures.

Now, let’s see how to create arrays in R. To create an array in R you need to

use the function called array(). The arguments to this array() are the set of

elements in vectors and you have to pass a vector containing the

dimensions of the array.

e.g. > A = array(

 c(1, 2, 3, 4, 5, 6, 7, 8),

 dim = c(2, 2, 2)

)

 > print(A)

Output:

, , 1 , , 2

 [,1] [,2] [,1] [,2]

[1,] 5 7 [1,] 1 3

[2,] 2 4 [2,] 2 4

f. Factors

Factors are the data objects which are used to categorize the data and
store it as levels. They are useful for storing categorical data. They can
store both strings and integers. They are useful to categorize unique
values in columns like “TRUE” or “FALSE”, or “MALE” or “FEMALE”, etc..

They are useful in data analysis for statistical modeling.

Now, let’s see how to create factors in R. To create a factor in R you
need to use the function called factor(). The argument to this factor() is

the vector.

e.g.

> fac = factor(c("Male", "Female", "Male", "Male", "Female", "Male",
"Female"))

> print(fac)

Output:

[1] Male Female Male Male Female Male Female

Levels: Female Male

Character vector:

To create a character vector in R we can enclose the vector values in double quotation

marks but if we want to use a data frame values to create a character vector then

as.character function can be used.

A character is held as a one-byte integer in memory. In R, there are two different ways
to create a character data type value, i.e., using as.character() function and by typing
string between double quotes("") or single quotes('').

A vector which contains character elements is known as an integer vector.

e.g.

d<-'shubham'

e<-"Arpita"

f<-65

f<-as.character(f)

d

e

f

char_vec<-c(1,2,3,4,5)

char_vec<-as.character(char_vec)

char_vec1<-c("shubham","arpita","nishka","vaishali")

char_vec

class(d)

class(e)

class(f)

class(char_vec)

class(char_vec1)

Operators:

Operators are the symbols directing the compiler to perform various kinds of

operations between the operands. Operators simulate the various mathematical,

logical, and decision operations performed on a set of Complex Numbers, Integers,

and Numericals as input operands.

Following are the types of the operators:

1. Arithmetic 2. Relational

 3. Logical 4. Assignment

 5. Increasing 6.Decreasing

 7.Specialoperators

1. Arithmetic operator :

Arithmetic operations simulate various math operations, like addition,

subtraction, multiplication, division, and modulo using the specified operator

between operands, which may be either scalar values, complex numbers, or

vectors. The operations are performed element-wise at the corresponding

positions of the vectors.

a)Addition operator (+):
 The values at the corresponding positions of both the operands are added.

Consider the following R snippet to add two vectors:

e.g

Input : a <- c (1, 0.1)
 b <- c (2.33, 4)
 print (a+b)
Output : 3.33 4.10

b)Subtraction Operator (-):
The second operand values are subtracted from the first. Consider the following

R snippet to subtract two variables:

e.g.
Input : a <- 6
 b <- 8.4
 print (a-b)
Output : -2.4

c)Multiplication Operator (*):
The multiplication of corresponding elements of vectors and Integers are
multiplied with the use of ‘*’ operator

e.g.

Input : a <- c (1, 0.1)
 b <- c (2.33, 4)
 print (a+b)

d)Division Operator (/):
The first operand is divided by the second operand with the use of ‘/’ operator.

e.g.

Input : a <- 1
 b <- 0
 print (a/b)
Output : -Inf

e)Power Operator (^):
The first operand is raised to the power of the second operand

e.g..

Input : list1 <- c(2, 3)
 list2 <- c(2,4)
 print(list1^list2)
Output : 4 81

f)Modulo Operator (%%):
The remainder of the first operand divided by the second operand is returned.

e.g.

Input : list1<- c(2, 3)
 list2<-c(2,4)
 print(list1%%list2)
Output : 0 3

Examples:

vec1 <- c(0, 2)
vec2 <- c(2, 3)

Performing operations on Operands
cat ("Addition of vectors :", vec1 + vec2, "\n")
cat ("Subtraction of vectors :", vec1 - vec2, "\n")
cat ("Multiplication of vectors :", vec1 * vec2, "\n")
cat ("Division of vectors :", vec1 / vec2, "\n")
cat ("Modulo of vectors :", vec1 %% vec2, "\n")
cat ("Power operator :", vec1 ^ vec2)

Operator Description Example

+ Adds two vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v+t)

it produces the following result −

[1] 10.0 8.5 10.0

− Subtracts second vector from the

first

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v-t)

it produces the following result −

[1] -6.0 2.5 2.0

* Multiplies both vectors

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v*t)

it produces the following result −

[1] 16.0 16.5 24.0

/ Divide the first vector with the

second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v/t)

When we execute the above code, it
produces the following result −

[1] 0.250000 1.833333 1.500000

%% Give the remainder of the first

vector with the second

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v%%t)

it produces the following result −

[1] 2.0 2.5 2.0

^ The first vector raised to the

exponent of second vector

v <- c(2,5.5,6)

t <- c(8, 3, 4)

print(v^t)

it produces the following result −

[1] 256.000 166.375 1296.000

1. Relational operator :

The relational operators carry out comparison operations between the

corresponding elements of the operands. Returns a boolean TRUE value if the

first operand satisfies the relation compared to the second. A TRUE value is

always considered to be greater than the FALSE.

Less than (<):
Returns TRUE if the corresponding element of the first operand is less than that
of the second operand. Else returns FALSE.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,0.1)
 print(list1<list2)
Output : FALSE FALSE

Less than equal to (<=):
Returns TRUE if the corresponding element of the first operand is less than or
equal to that of the second operand. Else returns FALSE.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,0.1)
 print(list<=list2)
Output : FALSE TRUE

Greater than (>):
Returns TRUE if the corresponding element of the first operand is greater than
that of the second operand. Else returns FALSE.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,0.1)
 print(list2 > list2)
Output : TRUE FALSE

Greater than equal to (>=):
Returns TRUE if the corresponding element of the first operand is greater or
equal to than that of the second operand. Else returns FALSE.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,0.1)
 print(list2 >= list2)
Output : TRUE TRUE

Not equal to (!=):
Returns TRUE if the corresponding element of the first operand is not equal to

second operand. Else returns FALSE.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,0.1)
 print(list1!=list2)
Output : TRUE FALSE

Examples:
x <- 5

> y <- 16

> x<y

[1] TRUE

> x>y

[1] FALSE

> x<=5

[1] TRUE

> y>=20

[1] FALSE

> y == 16

[1] TRUE

> x != 5

[1] FALSE

Operator Description Example

>

Checks if each element of the first vector is

greater than the corresponding element of the

second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>t)

it produces the following result −

[1] FALSE TRUE FALSE FALSE

<

Checks if each element of the first vector is

less than the corresponding element of the

second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v < t)

it produces the following result −

[1] TRUE FALSE TRUE FALSE

==

Checks if each element of the first vector is

equal to the corresponding element of the

second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v == t)

it produces the following result −

[1] FALSE FALSE FALSE TRUE

<=

Checks if each element of the first vector is

less than or equal to the corresponding

element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v<=t)

it produces the following result −

[1] TRUE FALSE TRUE TRUE

>=

Checks if each element of the first vector is

greater than or equal to the corresponding

element of the second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v>=t)

it produces the following result −

[1] FALSE TRUE FALSE TRUE

!=

Checks if each element of the first vector is

unequal to the corresponding element of the

second vector.

v <- c(2,5.5,6,9)

t <- c(8,2.5,14,9)

print(v!=t)

it produces the following result −

[1] TRUE TRUE TRUE FALSE

3.Logical Operator :

Logical operations simulate element-wise decision operations, based on the

specified operator between the operands, which are then evaluated to either a

True or False boolean value. Any non zero integer value is considered as a

TRUE value, be it complex or real number.

Element-wise Logical AND operator (&):
Returns True if both the operands are True.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,4+3i)
 print(list1 & list2)
Output : FALSE TRUE

Any non zero integer value is considered as a TRUE value, be it
complex or real number.

Element-wise Logical OR operator (|):
Returns True if either of the operands are True.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,4+3i)
 print(list1|list2)
Output : TRUE TRUE

NOT operator (!):
A unary operator that negates the status of the elements of the operand.

Input : list1 <- c(0,FALSE)
Output : TRUE TRUE

Logical AND operator (&&):
Returns True if both the first elements of the operands are True.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,4+3i)
 print(list1 && list2)
Output : FALSE

Compares just the first elements of both the lists.

Logical OR operator (||):
Returns True if either of the first elements of the operands are True.

Input : list1 <- c(TRUE, 0.1)
 list2 <- c(0,4+3i)
 print(list1||list2)
Output : TRUE

Operator Description Example

&

It is called Element-wise Logical AND

operator. It combines each element of the first

vector with the corresponding element of the

second vector and gives a output TRUE if both

the elements are TRUE.

v <- c(3,1,TRUE,2+3i)

t <- c(4,1,FALSE,2+3i)

print(v&t)

it produces the following result −

[1] TRUE TRUE FALSE TRUE

|

It is called Element-wise Logical OR operator.

It combines each element of the first vector

with the corresponding element of the second

vector and gives a output TRUE if one the

elements is TRUE.

v <- c(3,0,TRUE,2+2i)

t <- c(4,0,FALSE,2+3i)

print(v|t)

it produces the following result −

[1] TRUE FALSE TRUE TRUE

!

It is called Logical NOT operator. Takes each

element of the vector and gives the opposite

logical value.

v <- c(3,0,TRUE,2+2i)

print(!v)

it produces the following result −

[1] FALSE TRUE FALSE FALSE

The logical operator && and || considers only the first element of the vectors and give a
vector of single element as output.

&&

Called Logical AND operator. Takes first element of both the

vectors and gives the TRUE only if both are TRUE.

v <-

c(3,0,TRUE,2+2i)

t <-

c(1,3,TRUE,2+3i)

print(v&&t)

it produces the following
result −

[1] TRUE

||

Called Logical OR operator. Takes first element of both the

vectors and gives the TRUE if one of them is TRUE.

v <-

c(0,0,TRUE,2+2i)

t <-

c(0,3,TRUE,2+3i)

print(v||t)

it produces the following
result −

[1] FALSE

4. Assignment Operator:

Assignment operators are used to assign values to various data objects in R.
The objects may be integers, vectors, or functions. These values are then
stores by the assigned variable names. There are two kinds of assignment

operators: Left and Right

Left Assignment (<- or <<- or =):
Assigns a value to a vector.

Input : vec1 = c("ab", TRUE)
 print (vec1)
Output : "ab" "TRUE"

Right Assignment (-> or ->>):
Assigns value to a vector.

Input : c("ab", TRUE) ->> vec1
 print (vec1)
Output : "ab" "TRUE"

Operator Description Example

<−

or

=

or

<<−

Called Left Assignment

v1 <- c(3,1,TRUE,2+3i)

v2 <<- c(3,1,TRUE,2+3i)

v3 = c(3,1,TRUE,2+3i)

print(v1)

print(v2)

print(v3)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

->

or

->>

Called Right Assignment

c(3,1,TRUE,2+3i) -> v1

c(3,1,TRUE,2+3i) ->> v2

print(v1)

print(v2)

it produces the following result −

[1] 3+0i 1+0i 1+0i 2+3i

[1] 3+0i 1+0i 1+0i 2+3i

7.Special Operators or Miscellaneous Operators :
These are the mixed operators that simulate the printing of sequences and
assignment of vectors, either left or right-handed.

%in% Operator:
Checks if an element belongs to a list and returns a boolean value TRUE if the
value is present else FALSE.

Input : val <- 0.1
 list1 <- c(TRUE, 0.1,"apple")
 print (val %in% list1)
Output : TRUE

Checks for the value 0.1 in the specified list. It exists, therefore,
prints TRUE.

Colon Operator(:):
Prints a list of elements starting with the element before the color to the element
after it.

Input : print (1:5)
Output : 1 2 3 4 5

Prints a sequence of the numbers from 1 to 5.

%*% Operator:
This operator is used to multiply a matrix with its transpose. Transpose of the
matrix is obtained by interchanging the rows to columns and columns to rows.
The number of columns of first matrix must be equal to number of rows of
second matrix. Multiplication of the matrix A with its transpose, B, produce a
square matrix.

Input : mat = matrix(c(1,2,3,4,5,6),nrow=2,ncol=3)
 print (mat)
 print(t(mat))
 pro = mat %*% t(mat)
 print(pro)
Output : [,1] [,2] [,3] #original matrix of order 2x3
 [1,] 1 3 5
 [2,] 2 4 6
 [,1] [,2] #transposed matrix of order 3x2

 [1,] 1 2
 [2,] 3 4
 [3,] 5 6
 [,1] [,2] #product matrix of order 2x2
 [1,] 35 44
 [2,] 44 56

Operator Description Example

: Colon

operator. It

creates the

series of

numbers in

sequence

for a vector.

v <- 2:8

print(v)

it produces the following result −

[1] 2 3 4 5 6 7 8

%in%

This

operator is

used to

identify if an

element

belongs to a

vector.

v1 <- 8

v2 <- 12

t <- 1:10

print(v1 %in% t)

print(v2 %in% t)

it produces the following result −

[1] TRUE

[1] FALSE

%*%

This

operator is

used to

multiply a

matrix with

its

transpose.

M = matrix(c(2,6,5,1,10,4), nrow = 2,ncol = 3,byrow =

TRUE)

t = M %*% t(M)

print(t)

it produces the following result −

 [,1] [,2]

[1,] 65 82

[2,] 82 117

Input/Output Functions in R

With R, we can read inputs from the user or a file using simple and easy-to-
use functions. Similarly, we can display the complex output or store it to a file
using the same. R’s base package has many such functions, and there are
packages that provide functions that can do the same and process the
information in the required ways at the same time.

In this article, you’ll get the answers to these:

 How to Read user input in R?
 How to display output in R?

How to Read User Input in R?

In R, there are multiple ways to read and save input given by the user. here are a
few of them:

1. readline() function

We can read the input given by the user in the terminal with the readline() function.
Code:

input_read <- readline()

User Input:

412803 is pin code of wai
Code:

input_read

2. scan() function

We can also use the scan() function to read user input. This function, however, can only

read numeric values and returns a numeric vector. If a non-numeric input is given, the

function gives an error.

E.g.:

 1)

input_scan <- scan()

User Input:

 34 54 65 75 25

input_scan

 2)

input_scan2 <- scan()

User Input:

 34 566 2 a 2+1i

input_scan2

output:

Error in scan() : scan() expected ‘a real’, got ‘a’

https://techvidvan.com/tutorials/r-input-and-output-functions/#read-input
https://techvidvan.com/tutorials/r-input-and-output-functions/#display-output

How to Display Output in R?

To display the output of your program to the screen, you can use one of the following

functions:

1. print() functions
We can use the print() function to display the output to the terminal. The print()

function is a generic function. This means that the function has a lot of different

methods for different types of objects it may need to print. The function takes an

object as the argument. For example:

Example 1:

print(input_read)

Example 2:

print(input_scan)

Example 3:

print("abc")

Example 4:

print(34)

2. cat() function

We can also use the cat() function to display a string. The cat() function

concatenates all of the arguments and forms a single string which it then prints. For

example:

Code:

cat("hello", "this","is","techvidvan",12345,TRUE)

Data Import and Export function

The collection of numerical value is known as data. Data can be different forms. To

analyze data using R programming language, first import data in R. This can be

different formats CSV or any other delimiter separated. After importing data they can be

manipulate, analyze and report it.

Data Import

1) Importing the data into csv files from the syntax

 Method-1:

Using read.csv() function

 Syntax:

 read.csv(“path/file_name.csv”,header=TRUE)

 Or

 read.csv(file.choose(),header=TRUE)

 Method-2:

Syntax:

read.csv(“path.csv”,header=TRUE,sep= “,”)

where,

path=the path of the files to be imported

header=by default TRUE

sep=the seprated of values in each row if we give (,) in “ “

i.e “ , “ then separated the values in each row by ‘ , ‘

2) Importing data from text file (txt) :

We can easily import or read txt file using basic R function read.table().

 read.table() is used to read is files in table format.

Syntax-

 read.table(“path.txt”,header=TRUE)

3) Importing data from delimited file:

R has a function read.delim() to read the delimited file in the least the file is

by default separated by a which is represented by Sep= “ “, that separated

can be a comma(,) dollar symbol ($) etc.

Syntax-

read.delim(“path.delim”, header=TRUE, sep= “ “)

4) Importing data from excel file:

For importing data from excel file in R first we have to install “openxlsx”

using command install.packages(“openxlsx”)

Syntax-

read.xlsx(“path.xlsx”)

Exporting Data
Importing data in R is surely important for the user. However, exporting

data from R to other platform is equally important as well may want to

export the data from R workspace in to an excel file or csv or text file.

1) Exporting the data into text files from R-

Syntax-

write.table(R-data file,“path/file_name.txt”,row.names=FALSE)

2) Exporting the data into csv files from R-

Syntax-

write.csv(R-data file,“path/file_name.csv”)

3) Exporting the data into excel files from R-

Syntax-

write.xlsx(R-data file,“path/file_name.xlsv”)

R built-in functions

The function Which are already created or define in the programming frame work
are known as a built in functions in R has a reach set of functions that are used
to perform almost every task for user. These built-in function are divided into

following categories based on their functionality.

Math Functions

R provides the various mathematical functions to perform the mathematical
calculation. These mathematical functions are very helpful to find absolute value,
square value and much more calculations. In R, there are the following functions

which are used:

S.

No

Function Description Example

1. abs(x) It returns the absolute value of input x. x<- -4
print(abs(x))

Output

[1] 4

2. sqrt(x) It returns the square root of input x. x<- 4
print(sqrt(x))

Output

[1] 2

3. ceiling(x) It returns the smallest integer which is larger than or

equal to x.

x<- 4.5
print(ceiling(x))

Output

[1] 5

4. floor(x) It returns the largest integer, which is smaller than or

equal to x.

x<- 2.5
print(floor(x))

Output

[1] 2

5. trunc(x) It returns the truncate value of input x. x<- c(1.2,2.5,8.1)
print(trunc(x))

Output

[1] 1 2 8

6. cos(x), sin(x),

tan(x)
It returns cos(x), sin(x) value of input x. x<- 4

print(cos(x))
print(sin(x))
print(tan(x))

Output

[1] -06536436
[2] -0.7568025
[3] 1.157821

7. log(x) It returns natural logarithm of input x. x<- 4
print(log(x))

Output

[1] 1.386294

8. log10(x) It returns common logarithm of input x. x<- 4
print(log10(x))

Output

[1] 0.60206

9. exp(x) It returns exponent. x<- 4
print(exp(x))

Output

[1] 54.59815

String Function

R provides various string functions to perform tasks. These string functions allow us to
extract sub string from string, search pattern etc. There are the following string functions
in R:

S.

No

Function Description Example

1. sub(pattern,

replacement,x,

ignore.case=FALSE,

fixed=FALSE)

It finds pattern in x and replaces it with

replacement (new) text.

st1<- "England is beautiful but no
the part of EU"
sub("England', "UK", st1)

Output

[1] "UK is beautiful but not a part
of EU"

2. paste(..., sep="") It concatenates strings after using sep

string to separate them.

paste('one',2,'three',4,'five')

Output

[1] one 2 three 4 five

3. strsplit(x, split) It splits the elements of character vector

x at split point.

a<-"Split all the character"
print(strsplit(a, ""))

Output

[[1]]
[1] "split" "all" "the"
"character"

4. tolower(x) It is used to convert the string into lower

case.

st1<- "shuBHAm"
print(tolower(st1))

Output

[1] shubham

5. toupper(x) It is used to convert the string into upper

case.

st1<- "shuBHAm"
print(toupper(st1))

Output

[1] SHUBHAM

Other Statistical Function

Apart from the functions mentioned above, there are some other useful functions which
helps for statistical purpose. There are the following functions:

S.

No

Function Description Example

1. mean(x) It is used to find the mean for x object a<-c(0:10, 40)
xm<-mean(a)
print(xm)

Output

[1] 7.916667

2. sd(x) It returns standard deviation of an object. a<-c(0:10, 40)
xm<-sd(a)
print(xm)

Output

[1] 10.58694

3. median(x) It returns median. a<-c(0:10, 40)
xm<-meadian(a)
print(xm)

Output

[1] 5.5

4. quantilie(x,

probs)
It returns quantile where x is the numeric vector whose

quantiles are desired and probs is a numeric vector with

probabilities in [0, 1]

5. range(x) It returns range. a<-c(0:10, 40)
xm<-range(a)
print(xm)

Output

[1] 0 40

6. sum(x) It returns sum. a<-c(0:10, 40)
xm<-sum(a)
print(xm)

Output

[1] 95

7. min(x) It returns minimum value. a<-c(0:10, 40)
xm<-min(a)
print(xm)

Output

[1] 0

8. max(x) It returns maximum value a<-c(0:10, 40)
xm<-max(a)
print(xm)

Output

[1] 40

Other Useful Functions

Function Description

seq(from , to, by) generate a sequence

indices <- seq(1,10,2)

#indices is c(1, 3, 5, 7, 9)

rep(x, ntimes) repeat x n times

y <- rep(1:3, 2)

y is c(1, 2, 3, 1, 2, 3)

Programming:

Algorithms:

To make R do anything at all, you write an R script. In your R script, you tell the
computer, step by step, exactly what you want it to do, in the proper order. R
then executes each line of your script, following each step according to how you have
designe the script.

When you are telling the computer what to do, you also get to choose how it’s going
to be done. That’s where computer algorithms come in. An algorithm is the basic
technique used to get the job done. For example, let’s say you have a friend arriving
at the airport and she needs to get from the airport to your house. She might use the
following algorithm:

1. Catch bus number 70 outside the baggage claim area
2. Transfer to bus 14 on Main St.
3. Get off at Elm St.
4. Walk two blocks north to my house.

You will note that the algorighm is written in the order in which it is to be executed. It
wouldn’t make sense to perform Step 4 (Walk two blocks north) until after the other
three steps have been computed.

An R script is also written as an algorithm.

2.1 Example 1: Color Names

Let’s say we have a bunch of words - say, the names of colors. We want to compute
the average number of characters in these words. If we were going to do this by
hand, we would use the following algorithm:

1. Create a list of the words
2. Count the number of characters in each word
3. Compute the average from Step 2.

Code:

Col_name=c(“grey”, “grey”, “brown”, “orange”, “olive”, “green”, “cyan”, “blue”, “purple”, “pink”,

“red”)

Col_length=nchar(Col_name)

mean(col_length)

 Flowchart

Flowchart is a graphical representation of an algorithm. Programmers often

use it as a program-planning tool to solve a problem. It makes use of symbols

which are connected among them to indicate the flow of information and

processing. The process of drawing a flowchart for an algorithm is known as

“flowcharting”.

Basic Symbols used in Flowchart Designs

1. Terminal: The oval symbol indicates Start, Stop and Halt in a program’s

logic flow. A pause/halt is generally used in a program logic under some
error conditions. Terminal is the first and last symbols in the flowchart.

 Input/Output: A parallelogram denotes any function of input/output type.
Program instructions that take input from input devices and display output on
output devices are indicated with parallelogram in a flowchart.

 Processing: A box represents arithmetic instructions. All arithmetic

processes such as adding, subtracting, multiplication and division are
indicated by action or process symbol.

 Decision Diamond symbol represents a decision point. Decision based
operations such as yes/no question or true/false are indicated by diamond in
flowchart.

 Connectors: Whenever flowchart becomes complex or it spreads over more

than one page, it is useful to use connectors to avoid any confusions. It is
represented by a circle.

 Flow lines: Flow lines indicate the exact sequence in which instructions are
executed. Arrows represent the direction of flow of control and relationship
among different symbols of flowchart.

Example : Draw a flowchart to input two numbers from user and
display the largest of two numbers

Conditional Statements

The conditional statement is mainly use for decision making on R-

programming. Here we can discuss two type of conditional statement

1. If statement

2. If-else statement

1) If statement:

If statement is one of the Decision-making statements in the R programming

language. It is one of the easiest decision-making statements. It is used to

decide whether a certain statement or block of statements will be executed or

not i.e if a certain condition is true then a block of statement is executed

otherwise not.

 The basic structure of if statement is given by

Syntax:

if (expression) {

 #statement to execute if condition is true

 }

If the expression is true, the statement gets executed. But if the expression

is FALSE, nothing happens. The expression can be a logical/numerical vector,

but only the first element is taken into consideration. In the case of numeric

vector, zero is taken as FALSE, rest as TRUE.

Flowchart R Programming if statement

Examples:

1)# assigning value to variable a
 a <- 5
 if(a > 0)
 {
 print("Positive Number") # Statement
 }

2) # Assigning value to variable x

 x <- 12
 if (x > 20)
 {
 print("12 is less than 20") # Statement
 }

2) if-else statement:
The if-statement in Programming Language alone tells us that if a condition is

true it will execute a block of statements and if the condition is false it won’t. But

what if we want to do something else if the condition is false. Here comes the

R else statement. We can use the else statement with the if statement to

execute a block of code when the condition is false.

Syntax of if-else statement in R Language:

if (condition)

{

 // Executes this block if

 // condition is true

} else

{

 // Executes this block if

 // condition is false

}

Flowchart if-else statement in R:

https://www.geeksforgeeks.org/r-if-statement/

Examples:

1) x <- 5

 # Check value is less than or greater than 10
 if(x > 10)
 {
 print(paste(x, "is greater than 10"))
 }else
 {
 print(paste(x, "is less than 10"))
 }

 Output:
 [1] "5 is less than 10"

 Here in the above code, Firstly, x is initialized to 5, then if-condition is

 checked(x > 10), and it yields false. Flow enters the else block and prints the

 statement “5 is less than 10”.

2) x <- 5

 # Check if value is equal to 10
 if(x == 10)
 {
 print(paste(x, "is equal to 10"))
 }
 else
 {
 print(paste(x, "is not equal to 10"))
 }

Output:

[1] "5 is not equal to 10"

Loops:

The loop statement are essential to construct systematically block stile

programming. Here we can discuss two type of conditional statement

1. for loop

2. while loop

 1)for loop:

For loop in R Programming Language is useful to iterate over the elements of
a list, dataframe, vector, matrix, or any other object. It means, the for loop can
be used to execute a group of statements repeatedly depending upon the
number of elements in the object. It is an entry controlled loop, in this loop the
test condition is tested first, then the body of the loop is executed, the loop body
would not be executed if the test condition is false.

For loop in R Syntax:

for (var in vector) {

 statement(s)

 }

Here, var takes on each value of vector during the loop. In each iteration, the
statements are evaluated.

Flowchart of For loop in R:

Examples:

1) # the use of for loop

 for (i in 1: 4)
 {
 print(i ^ 2)
 }

Output:

[1] 1

[1] 4

[1] 9

[1] 16

In the above example, we iterated over the range 1 to 4 which was our vector.
Now there can be several variations of this general for loop. Instead of using a
sequence 1:5, we can use the concatenate function as well.

2)# for loop along with concatenate

 for (i in c(-8, 9, 11, 45))
 {
 print(i)
 }
Output:

[1] -8

[1] 9

[1] 11

[1] 45

Instead of writing our vector inside the loop, we can also define it beforehand.

3) # for loop with vector

 x <- c(-8, 9, 11, 45)
 for (i in x)
 {
 print(i)
 }
Output:

[1] -8

[1] 9

[1] 11

[1] 45

2)While Loop:
It is a type of control statement which will run a statement or a set of statements
repeatedly unless the given condition becomes false. It is also an entry
controlled loop, in this loop the test condition is tested first, then the body of the
loop is executed, the loop body would not be executed if the test condition is
false.

R – While loop Syntax:

while (condition)

{

 statement

}

While loop Flow Diagram:

Examples:

Example 1: Program to display numbers from 1 to 5 using while loop in R.

R program to demonstrate the use of while loop

val = 1

using while loop
while (val <= 5)
{
 # statements
 print(val)
 val = val + 1
}
Output:

[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Initially, the variable value is initialized to 1. In each iteration of the while loop
the condition is checked and the value of val is displayed and then it is
incremented until it becomes 5 and the condition becomes false, the loop is
terminated.

Example 2: Program to calculate factorial of a number.
n < - 5
factorial < - 1
i < - 1
while (i <= n)
{
 factorial = factorial * i
 i = i + 1
}
print(factorial)

Output:

[1] 120

Unconditional Statement

In R programming, we require a control structure to run a block of code multiple
times. Loops come in the class of the most fundamental and strong
programming concepts. A loop is a control statement that allows multiple
executions of a statement or a set of statements. The word ‘looping’ means
cycling or iterating.

Jump statements are used in loops to terminate the loop at a particular iteration
or to skip a particular iteration in the loop.The two most commonly used jump
statements in loops are:

 Break Statement
 Next Statement
Note: In R language continue statement is referred to as the next statement.

Break Statement
The break keyword is a jump statement that is used to terminate the loop at a
particular iteration.
Syntax:
if (test_expression) {

 break

 }

Examples:

Example 1: Using break in For-loop

R program for break statement in For-loop

no<- 1:10

for (val in no)
 {

 if (val == 5)
 {
 print(paste("Coming out from for loop Where i = ", val))
 break
 }
 print(paste("Values are: ", val))
 }

Output:
[1] "Values are: 1"

[1] "Values are: 2"

[1] "Values are: 3"

[1] "Values are: 4"

[1] "Coming out from for loop Where i= 5"

Example 2: Using break statement in While-loop

R Break Statement Example
a<-1
while (a < 10)
{
 print(a)
 if(a==5)
 break
 a = a + 1
}

Output:
[1] 1

[1] 2

[1] 3

[1] 4

[1] 5

Next Statement
The next statement is used to skip the current iteration in the loop and move to
the next iteration without exiting from the loop itself.
Syntax:
if (test_condition)

 {

 next

 }

Example 1: Using next statement in For-loop
R Next Statement Example

no<- 1:10

for (val in no)
{
 if (val == 6)
 {
 print(paste("Skipping for loop Where i = ", val))
 next
 }
 print(paste("Values are: ", val))
}

Output:
[1] "Values are: 1"

[1] "Values are: 2"

[1] "Values are: 3"

[1] "Values are: 4"

[1] "Values are: 5"

[1] "Skipping for loop Where i = 6"

[1] "Values are: 7"

[1] "Values are: 8"

[1] "Values are: 9"

[1] "Values are: 10"

Example 2: Using next statement in While-loop
R Next Statement Example
x <- 1
while(x < 5)
{
 x <- x + 1;
 if (x == 3)
 next;
 print(x);
}

Output:
[1] 2

[1] 4

[1] 5

goto statement in R Programming
Goto statement in a general programming sense is a command that takes the
code to the specified line or block of code provided to it. This is helpful when
the need is to jump from one programming section to the other without the use

of functions and without creating an abnormal shift.

Unfortunately, R doesn’t support goto but its algorithm can be easily converted
to depict its application. By using following methods this can be carried out
more smoothly:
 Use of if and else
 Using break, next and return

Functions in R Programming
Functions are useful when you want to perform a certain task multiple times. A
function accepts input arguments and produces the output by executing valid R
commands that are inside the function. In R Programming Language when you
are creating a function the function name and the file in which you are creating
the function need not be the same and you can have one or more function
definitions in a single R file.

Types of function in R Language
 Built-in Function: Built function R is sq(), mean(), max(), these function are

directly call in the program by users.
 User-defile Function: R language allow us to write our own function.

Functions in R Language

Functions are created in R by using the command function(). The general
structure of the function file is as follows:

Note: In the above syntax f is the function name, this means that you are
creating a function with name f which takes certain arguments and executes the
following statements
.

Single Input Single Output
Now create a function in R that will take a single input and gives us a single

output.

Example-1:

A simple R function to calculate

https://www.geeksforgeeks.org/introduction-to-r-programming-language/

area of a circle

areaOfCircle = function(radius){
 area = pi*radius^2
 print(area)
 }
 areaOfCircle(2)

Following is an example to create a function that calculates the area of a circle
which takes in the arguments the radius. So, to create a function, name the
function as “areaOfCircle” and the arguments that are needed to be passed are

the “radius” of the circle.

Example-2:

A simple R function to check
whether x is even or odd

evenOdd = function(x){
 if(x %% 2 == 0)
 print("even")
 else
 print("odd")
 }
evenOdd(4)
evenOdd(3)

Output:

[1] "even"

[1] "odd"

Multiple Input Multiple Output
Now create a function in R Language that will take multiple inputs and gives us
multiple outputs using a list.

Example:

A simple R function to calculate
area of a rectangle

Rectangle = function(length, width){
 area = length * width
 print(area)
 }

 Rectangle(2, 3)

Output:

 6

Graphical Representation of R programming

 R language is mostly used for statistics and data analytics purposes to

represent the data graphically in the software. To represent those data

graphically, charts and graphs are used in R.

We can discuss here three type of graphical Representation.

 Histogram

 Frequency polygon

 Ogive curve

Histogram

Histogram is a graphical representation used to create a graph with bars
representing the frequency of grouped data in vector. Histogram is same as bar
chart but only difference between them is histogram represents frequency of
grouped data rather than data itself.

We can create histogram in R Programming Language using hist()

function.

Syntax: hist(v, main, xlab, xlim, ylim, breaks, col, border)
Parameters:
 v: This parameter contains numerical values used in histogram.
 main: This parameter main is the title of the chart.
 col: This parameter is used to set color of the bars.
 xlab: This parameter is the label for horizontal axis.
 border: This parameter is used to set border color of each bar.
 xlim: This parameter is used for plotting values of x-axis.
 ylim: This parameter is used for plotting values of y-axis.
 breaks: This parameter is used as width of each bar.

Example-1:

Create data for the graph.
v <- c(19, 23, 11, 5, 16, 21, 32,
 14, 19, 27, 39)

Create the histogram.
hist(v, xlab = "No.of Articles ",
 col = "green", border = "black")

Output:

Example-2:

Create data for the graph.
v <- c(19, 23, 11, 5, 16, 21, 32, 14, 19, 27, 39)

Create the histogram.
hist(v, xlab = "No.of Articles", col = "green",
 border = "black", xlim = c(0, 50),
 ylim = c(0, 5), breaks = 5)

Output:

Frequency polygon

Frequency polygons are the plots of the values in a data frame to visualize the

shape of the distribution of the values. It helps us in comparing different data

frames and visualizing the cumulative frequency distribution of the data frames.

The frequency polygon indicates the number of occurrences for each distinct

class in the data frame.

 To create a basic frequency polygon in the R Language, we first create a line

plot for the variables under construction. Then we use the polygon() function to

create the frequency polygon.

Syntax: plot(x, y) polygon(c(xmin, x, xmax), c(ymin, y, ymax), col)
where,

x and y: determines the data vector for x and y axes data.
xmin and ymin: determines the minimum limit of x and y axis.
xmax and ymax: determines the maximum limit of x and y axis.
col: determines the color of frequency polygon.

Example-1:

x<-1:40

y<-sample(5:40,40,replace=TRUE)
plot(x,y,type="l")
polygon(c(1,x,40),c(0,y,0),col="green")

output:

Digrametic Representation of R programming

There are hundreds of charts and graphs present in R. For example, bar plot,

box plot, mosaic plot, dot chart, histogram, pie chart, scatter graph, etc.

We can discuss here following type of digramatical Representation.

 Simple Bar Diagram

 subdivided bar diagram

 pie diagram

Bar Plot or Bar Chart

Bar plot or Bar Chart in R is used to represent the values in data vector as
height of the bars. The data vector passed to the function is represented over y-
axis of the graph. Bar chart can behave like histogram by using table() function
instead of data vector.
Note: To know about more optional parameters in barplot() function, use the
below command in R console:

Syntax: barplot(data, xlab, ylab)
where:

data is the data vector to be represented on y-axis
xlab is the label given to x-axis

 ylab is the label given to y-axis

Example-1:
x <- c(7, 15, 23, 12, 44, 56, 32)

plotting vector
barplot(x,xlab = "GeeksforGeeks Audience",
 ylab = "Count", col = "white",
 col.axis = "darkgreen",
 col.lab = "darkgreen")

output:

Pie Diagram or Pie Chart

Pie chart is a circular chart divided into different segments according to the ratio
of data provided. The total value of the pie is 100 and the segments tell the
fraction of the whole pie. It is another method to represent statistical data in
graphical form and pie() function is used to perform the same.
Note: To know about more optional parameters in pie() function, use the below

command in the R console:

Syntax: pie(x, labels, col, main, radius)
where,

x is data vector
labels shows names given to slices
col fills the color in the slices as given parameter
main shows title name of the pie chart
radius indicates radius of the pie chart. It can be between -1 to +1

Example-1:
Create data for the graph.
geeks<- c(23, 56, 20, 63)
labels <- c("Mumbai", "Pune", "Chennai", "Bangalore")

Plot the chart.
pie(geeks, labels)

output:

Example-2:

geeks <- c(23, 56, 20, 63)

labels <- c("Mumbai", "Pune", "Chennai", "Bangalore")

piepercent<- round(100 * geeks / sum(geeks), 1)

Plot the chart.

pie(geeks, labels = piepercent,

 main = "City pie chart", col = rainbow(length(geeks)))

legend("topright", c("Mumbai", "Pune", "Chennai", "Bangalore"),

 cex = 0.5, fill = rainbow(length(geeks)))

output:

Programmes:

1)Finding Area of circle:

 radius=4

pi=3.14

area = pi*radius^2

area

2) To check whether the given integer is positive or negative:

a = as.integer(readline(prompt = "Enter the number :"))

if(a > 0)

 {

 print(paste("The number", a ,"is positive"))

 }else

 {

 print(paste("The number", a ,"is negative"))

 }

 3) Reverse a given number:
n = as.integer(readline(prompt = "Enter given number :"))

rev = 0

while (n > 0) {

 r = n %% 10

 rev = rev * 10 + r

 n = n %/% 10

}

print(paste("Reverse number is :", rev))

4)To find greatest of three numbers:

x <- as.integer(readline(prompt = "Enter first number :"))

y <- as.integer(readline(prompt = "Enter second number :"))

z <- as.integer(readline(prompt = "Enter third number :"))

if (x > y && x > z)

 {

 print(paste("Greatest is :", x))

 } else

 if (y > z)

 {

 print(paste("Greatest is :", y))

 } else

 {

 print(paste("Greatest is :", z))

 }

 }

5)Find Prime numbers in a given range:

Individual number

n = as.integer(readline(prompt = "Enter a number :"))

 f = 1

 i = 2

 while (i <= n / 2) {

 if (n %% i == 0) {

 f = 0

 break

 }

 i = i + 1

 }

 if (f == 1) {

 print(paste("Number is prime :", n))

 } else{

 print(paste("Number is not prime :", n))

 }

Given Range

n = as.integer(readline(prompt = "Enter a number :"))

for (j in 2:n)

 {

 f = 1

 i = 2

 n = j

 while (i <= n / 2)

 {

 if (n %% i == 0)

 {

 f = 0

 break

 }

 i = i + 1

 }

 if (f == 1)

 {

 print(paste("Number is prime :", n))

 }

 }

6)To check if number is odd or even:

a = as.integer(readline(prompt = "Enter a number :"))

a

 if(a %% 2 == 0)

 {

 print(paste("The number", a ,"is even"))

 }else

 {

 print(paste("The number", a ,"is odd"))

 }

7)To check leap year:

 year = as.integer(readline(prompt="Enter a year: "))

if((year %% 4) == 0)

 {

 if((year %% 100) == 0)

 {

 if((year %% 400) == 0)

 {

 print(paste(year,"is a leap year"))

 } else

 {

 print(paste(year,"is not a leap year"))

 }

 } else

 {

 print(paste(year,"is a leap year"))

 }

 } else

 {

 print(paste(year,"is not a leap year"))

 }

8) To find sum of first n natural numbers:

num = as.integer(readline(prompt = "Enter a number: "))

if(num < 0) {

 print("Enter a positive number")

} else {

sum = 0

use while loop to iterate until zero

while(num > 0) {

sum = sum + num

num = num - 1

}

print(paste("The sum is", sum))

}

9) To find AM, GM, and HM for ungrouped data:

Example-1:

Monthly sales of 10 small shops are given below

100,190, 210, 160, 150, 160, 190, 200, 170, 152

Calculate A.M. , G.M., H.M. of the above data and also calculate median, mode

and quartiles.

Sol:

x=c(100,190, 210, 160, 150, 160, 190, 200, 170, 152)

n=length(x)

am=mean(x)

lx=log10(x)

gm=10^mean(lx)

hm=n/sum(1/x)

tx=table(x); m=which(tx==max(tx)); stx=sort(unique(x)); mo=stx[m]

me=median(x)

q1=quantile(x,0.25); q2=quantile(x,0.50); q3=quantile(x,0.75)

Example-2:

For the following frequency distribution

x: 1 2 3 4 5

f: 7 11 9 8 3

Calculate A.M.,G.M. and H.M.

sol:

x=1:5

f=c(7, 11, 9, 8, 3)

n=sum(f)

y=rep(x,f)

am=mean(y)

ly=log10(y)

gm=10^mean(ly)

hm=n/sum(f/x)

10) To find Mean deviation, Variance, Standard deviation for ungrouped data:

Example-1:

The number of mistakes in a page recorded for 20 pages are as follows.

2, 5, 9, 7, 11, 6, 5, 2, 7, 9, 3, 2, 8, 12, 14, 6, 3, 9, 8, 7

Calculate find mean deviation about mean, variance and standard deviation.

Sol:

X=c(, 5, 9, 7, 11, 6, 5, 2, 7, 9, 3, 2, 8, 12, 14, 6, 3, 9, 8, 7)

n=length(x)

mx=mean(x)

md=sum(abs(x-mx))/n

v1=var(x)

v=((n-1)/n)*v1

sd=sqrt(v)

cv=sd*100/abs(mx)

Example-2:

Calculate mean deviation about median, variance, standard deviation and also

calculate quartile deviation and its coefficient.

Match score: 0 1 2 3 4

No. of matches: 27 9 8 5 4

Sol:

x=1:4

f=c(27,9,8,5,4)

n=sum(f)

y=rep(x,f)

mx=sum(f*x)/n

q1=quantile(y,0.25); q2=quantile(y,0.50); q3=quantile(y,0.75)

md=sum(f*abs(x-q2))/n

v=sum(f*(x-mx)^2)/n

sd=sqrt(v)

qd=(q3-q1)/2

cqd=(q3-q1)/(q3+q1)

	1) Numeric Data Type :
	The numeric data type is for numeric values. It is the default data type for numbers in R. Examples of numeric values would be 1, 34.5, 3.145, -24, -45.003, etc.
	2) Integers Data Type :
	The Integer data type is used for integer values. To store a value as an integer, we need to specify it as such. The integer data type is commonly used for discrete only values like unique ids. We can store as well as convert a value into an integer t...
	e.g,
	[1] "integer”
	Note: We can also use the capital ‘L’ notation to denote that a particular value is of the integer data type.
	e.g. > int3 <- 5L
	> class(int3)
	[1] "integer"
	> typeof(int3)
	[1] "integer" (1)
	3) Complex Data Type :
	The complex data type is to store numbers with an imaginary component. Examples of complex values would be 1+2i, 3i, 4-5i, -12+6i, etc.
	e.g > comp <- 22-6i
	> class(comp)
	[1] "complex"
	> typeof(comp)
	[1] "complex" (1)
	4) Logical Data Type :
	The logical data type stores logical or boolean values of TRUE or FALSE.
	e.g.
	> logi <- FALSE
	> class(logi)
	[1] "logical"
	> typeof(logi)
	[1] "logical" (1)
	5) Character Data Type :
	The character data type stores character values or strings. Strings in R can contain the alphabet, numbers, and symbols. The easiest way to denote that a value is of character type in R is to wrap the value inside single or double inverted commas.
	e.g. (1)
	> char <- "dataflair1234"
	> class(char)
	[1] "character"
	> typeof(char)
	[1] "character" (1)
	Code :
	comp <- 22-6i
	int2 <- as.integer(comp)
	int2
	char2 <- as.character("hello")
	char3 <- as.character(comp)
	char2
	char3
	num2 <- as.numeric(int)
	num2
	int4 <- as.integer(num)
	int4
	comp2 <- as.complex(num)
	comp2
	comp2 <- as.complex(num) (1)
	char2 <- as.character(num)
	2) > empId = c(1, 2, 3, 4)
	> empName = c("Debi", "Sandeep", "Subham", "Shiba")
	> numberOfEmp = 4
	> empList = list(empId, empName, numberOfEmp)
	> print(empList)
	[[1]]
	[1] 1 2 3 4
	[[2]]
	[1] "Debi" "Sandeep" "Subham" "Shiba"
	[[3]]
	[1] 4
	Data frames are generic data objects of R which are used to store the tabular data. Data frames are the foremost popular data objects in R programming because we are comfortable in seeing the data within the tabular form. They are two-dimensional, het...
	e.g. > Name = c("Amiya", "Raj", "Asish")
	> Language = c("R", "Python", "Java")
	> Age = c(22, 25, 45)
	> df = data.frame(Name, Language, Age)
	> print(df)
	Output:
	Name Language Age
	1 Amiya R 22
	2 Raj Python 25
	3 Asish Java 45
	d. Matrices
	A matrix is a rectangular arrangement of numbers in rows and columns. In a matrix, as we know rows are the ones that run horizontally and columns are the ones that run vertically. Matrices are two-dimensional, homogeneous data structures. Now, let’s s...
	e.g. A = matrix(
	c(1, 2, 3, 4, 5, 6, 7, 8, 9),
	nrow = 3, ncol = 3,
	byrow = TRUE
)
	> print(A)
	Output: (1)
	[,1] [,2] [,3]
	[1,] 1 2 3
	[2,] 4 5 6
	[3,] 7 8 9
	e. Arrays
	Arrays are the R data objects which store the data in more than two dimensions. Arrays are n-dimensional data structures. For example, if we create an array of dimensions (2, 3, 3) then it creates 3 rectangular matrices each with 2 rows and 3 columns....
	f. Factors
	a)Addition operator (+):
	b)Subtraction Operator (-):
	c)Multiplication Operator (*):
	d)Division Operator (/):
	e)Power Operator (^):
	f)Modulo Operator (%%):
	Less than (<):
	Less than equal to (<=):
	Greater than (>):
	Greater than equal to (>=):
	Not equal to (!=):
	Element-wise Logical AND operator (&):
	Element-wise Logical OR operator (|):
	NOT operator (!):
	Logical AND operator (&&):
	Logical OR operator (||):
	Left Assignment (<- or <<- or =):
	Right Assignment (-> or ->>):
	7.Special Operators or Miscellaneous Operators :
	%in% Operator:
	Colon Operator(:):
	%*% Operator:

	Input/Output Functions in R
	How to Read User Input in R?
	1. readline() function

	Math Functions
	String Function
	Other Statistical Function
	Other Useful Functions
	Algorithms:
	2.1 Example 1: Color Names
	Flowchart R Programming if statement

	2) if-else statement:
	Syntax of if-else statement in R Language:
	Flowchart if-else statement in R:
	For loop in R Syntax:
	Flowchart of For loop in R:
	2)While Loop:
	R – While loop Syntax:
	While loop Flow Diagram:
	Break Statement
	Next Statement

	goto statement in R Programming
	Functions in R Programming
	Types of function in R Language
	Functions in R Language

	Single Input Single Output
	Multiple Input Multiple Output
	Histogram
	Bar Plot or Bar Chart
	Pie Diagram or Pie Chart

