
284 
ADVANG PHYSICAL CHEMISTRY 

The Stirling's theorem is an approximation and is only valid when n is very large. For example, let us calculate the value of In 5 ! with and without Stirling's theorem. 
5!=5x4x3x2x1 = 120 

In 51= In 120 - 2.903 log 120 
4.7883 a 

By Stirling's theorem, 
In 5!=5 In5- 5 

n n= n.n n -n 
= 5x 2.303 log 5 - 5 

=8.0486-5 3.0486 
The above calculations show that Stirling's theorem is valid only when n is very large. THERMODYNAMIC PROBABILITY 
Planck gave the concept of thermodynamic probability or statistical probability (denoted by P) to indicate the total number of possible complexions or microstates for any given combination. The thermodynamic probability of a macrostate of a systemm is defined as the total number of different uoays (iL.e., total number of microstates) by which the given microstate may be realised. It is denoted by P or W. 

P of a macrostate = Number or microstates corresponding to that macrostate The thermodynamic probability for different states (macrostates) of molecular systems is a 
very great number. It is to remember, that thermodynamic prcbability is proportional to 
mathematical probability* 

Consider a system of volume V containing n identical and distinguishable particles; the value 
of n being very large. Let E, be the total energy of the system whose temperature is T. It is clear 
that all the particles will not have the same energy. Suppose no purticles are in energy level_ E 
E, n1 particles are in energy level ej and so on. Then, 

B=nofo + n + ngE2 t. ni +..2ne Also 
n otnj tn t... n; t ... =n; As the occupation numbers, n1, n2, ng.. etc., in different energy levels change, the distribution also changés. There are obviously number of ways of distribution, similar to the arrangement ofn boys inp-rooms, so that one room has ng boys and the other room has n boys and 

so on. This number is given by, 
n! P=-

.(1) Tngin!ng!.. ! The thermodynamic probability of a distribution is thus equal to the number of ways of 
realising the distribution. 

Equation (1) is used to determine the probability for all distributions of all the nolecules in a 
given molecular system in different energy levels at a constant total onergy. Taking the logarithm of both sides of equation (1) 

In P ln nl- (ln no !+In n^l+ In na!t... +In n; !) In P = In n! -E In n; 
or 

(2) 
The thermolynamic probability (P) is relaed to matlhemnticnl probability (W) which ia given by: W-T. C*", where C** is the total number of possible cases 

ction a 
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CHEMICAL STATISTICS OR STATISTICAL TIHERMODYNAMICS 
Problem 2: 

According to Stirling's theorem, 
(i tuvo d 

(ii) t 

Sol In nl=n lnn-n| 
n nl=2n, ln ni-Xn 

Puting the values from equations (3) and (4) in equation (2), we get, 

In P n lnn -n-(n ln n;-Xn) 
InP =nlnn-n-2n,lo n; +Yii 

.4 

or 

But n 

Cond htn nP=n nn-2n; ln n; 
The diferentiat faxiMum, baaliy Anp = o 

(5) 

dIn P d (n In n)-Xd (n;ln n) 
But the total number of particles (rn) is constant. So equation (6) becomes, dIn P -d(la n) 

.. (6) 

. (7) 
Modification of equation (1): Two modifications have been introduced in equation ( (a) First modificationi : Certain states are energetically so dose to each other that they cannot be distinguished from one another, i.e., degeneracy of. energy-levels. Regarding this correction, a factor g called statistical uweight factor for each state is introduced. This factor represents the degeneracy of the given energy state or level. A given energy-level ís said to be 8-degenerate' if there are g-number of possible distributions (equal distiribution) of energy in that energy-level. 
b) Second modification : This modification is based on the fact that molecules are indistinguishable. Therefore, we have to divide the total expression for P byn!. On the basis of the above two corrections the expression for P can be written as, 

g!n!na!n! 
This equation is the result of classical statistical treatment modified by quantum statistics. Problem 1: Calculate the number of ways of distributing distinguishable molecules x,y and z between three energy levels so as to obBain the following sels of occupaiion numöer No 1, N1 =1, N2=1; ie, each energy level is occupied by one moleciule Solution: The probability Wis given by 

N WNIN,!N 
Here, N=3,N, = N,=N, =1 

W- 3x2x1 
1!1!1!1x1x1 

There are six ways of distributing the three molecules us nquired in the problem. The same result may be obtaincd by considering the following treatment 

Configuration Energy state 
No = 1, Ni = 1, Na = 1 

VI 

2 

There are six possible conligurations. 

, 



igrange's Method 
Muliply equa 
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oa4+12+4=20 
Problem 5: Calculate the total number of complerions in arranging four distingulsh le energy leuel 0, 1e, 2e prooided these levels are respectively 3-,2- and -fold degenerate. Solutlon: As ealeulatod in the previous problem, we have 

add equation (2 

108 3 9(1 

- 432 (219 119( 9 

Q-48)2).96 
ula108+ 432 +96 636 

MOST PROBABLE DISTRIBUTION AND MAXWELL-BOLTZMANN DISTRIBUTION LAW OF ENERGY 
Consider a system containing n particles háving a total energy E,. All particl. ; are in different energy levels. The allowed energy levels are fixed by quantum mechanical prine les. The thermodynamic probability (P) of this distribution is given by, 

P 
n! 

log P = log n!-Xlog n, ! 
Since n, as also n; are very large, we can apply Stirling's theorem, viz., 

logx!=x log x -x 
log P =logn!-2log n 

n logn-n- log n1-nitng log n2-n2 log P-n log n- En, log n;-+EÁ 

Therefore; 

or 

=n log n-En, log n; Sincen=n) . (1) We canfind outthemost probable distribution, when the system attains quilibrium. Theprobability will be maximum when the distribution corresponding to equilibriun is attained. In 
other words, at equilihrium distribution, the magnitude of P and, therefore, of log P will be maximum. Hence, at equlibrium, d log P = 0. 

At equilibrium, equation (1) can be written as, 
d log P =d (a log n) -d (n; log n) =0 

dnlog n) =0 i.e., 

log n; dn; + E dn; = 0 
Since En =n= constant, therefore, Edn; = 0 

or 

log n, dn;=0 
For the given system, the total energy (E,) and the total number of par\feles (n) remai= constant, i.e., 

n En; or dn = 2 dn; =0 
( 

E,=Entj or dE,=Ee dn;=0 

.., 



Lagrange Method of Undetermined Multiples 
y Multiply equations (3) and (4) by arbitrary undetermined multipliers a and ß, respectively and 
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add equation (2), we ge, 
E log n; dn; +aZ dn, + B2� dn^ =0 

dn; (log n +a+ ßZe) =0 
Since a and p are îndependent, the restraining conditions are removed, and dn; #0, so this relation wil hold good for any energy level or coll. Thus, 

log n ta+ Be= 0 

log n=-a-e 
n=.er4 

5) 
or 

. 

Equation (5) gives the number of particles in each energy level (a, p are unknown arbitrary constants). It is one form of the celebrated Boltmann distribution law 
n En=e.ki 

. (6) 

.(7) n 

Equation (6) is known as Maxwell-Boltzmann distribution lato: This law gives at a temperature T, the fraction of the total number of molecules which at equilibrium or most probablestate would possess energy, Equation (7) gives the populations of the most probable configuration of the ensemble. This is known as canonical distribution. 
Anew factor may, however, be introduced at this point. In a given cell or energy level i, all the particles may have the same energy ei, but the energy may be arrayed in different ways for different particles. So, such a state in which there are different ways of array is known as degenerate'. If there are gi number of possible distributions of energy in a given energy level i, then the state is said to be "8degenerate", where g; is called the statistical uweight factor 

Thus, equations (5) and (6) become 

. (8) 
and n=e".g; e . (9) 

. (10) n ge 

PARTITION FUNCTION 
In equation (7), the factor Ze"i represents the sum of the factor ei over all the energy levels. It is called the partition function and is denoted by f. Therefore, 

f= De B 
The factor ß is called the modulus of distribution. 
Evaluation of B. The Boltzmann law can be written in terms of partition function as:

-danlnnj=o 
log n; = log n - logf-Be z dni hni da) 

dai. dnni eo Zv) dlnni -+ (Enni dan 
2ni (d Snn) t 2lnní dni 

sterms a 
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We know that both entropy and probäbility attain matimum value at equilibrium relation bebween entropy (S) and probability (W) is given by, 
S=k log W 

sical Signiicang 
) Qualitativ 

Since probability (W) is proportional to the thermodynamic probability (P), we have, 
S-B-k log P 

where, B is à constant and has been taken as zero by Planck. " 

Substituting the value of P from equation (1) in the last equation, we have, 

mong the var 

() Par 

substancS 
relati 

el =nlog n- n, log n-log f-Be) 
=n log n-log n Z n4+logf ni + B2ni 
=n log n-n log n +n logf+ pe;n 

S-B n logf+BE, (where E,= en) 
S-B=nk logf+BE 

Prom equation (11)] rel 

OT 

or 

Differentiating this equation with respect to E, at constant volume, we get, 

.12) 

nuk d+a+ kE 
13) 

Since, 

(dB\ 

When the energy (E) is purely the internal energy (E), then, ds E4p 
From first and second law of thermodynamics, we have 

dE+PdV=dQ= Tds 
(14) 

or 

From equations (14) and (15), we have 
(15) 

So, undetermined multuplier, 1 

Therefore, partition function, 
and 

De/T 

If we consider the degenerate state of a system, then,, 
.(16) 

** 
** 
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(17) 
yslcal Stgnficance of f 

G) Qualitatively speaking, the partition function indicates how the particles are distributed mong the various energy states uevels or cells). It is a measure of available energy-levels. 
) Partition function ís a quantity, charactoristic of every substance (and also of a mixture of STbstances or a system). It retlects the diversity of energy states of the molecules of a system and relative probability of these states (in comparison to the lowest energy-level, Ep). In other words, the relative population of any two quantum states p and q is given by the ratio n,/n, obtained by the application of equation (17), 

npp f 
eT 

f 
and 

Pe-22l-/NT Pq 
Here p' terms denote the probability at a particular level. The second form of distribution law gives the population in two different levels. 
Case 1. If these two states are degenerate, i.e., e, = Eq, it follows that they are equally populated. 
Case 2. If e,> E, then n, < ng, ie., states are equally populated. Case 3. As long as (e-E)<kT, the population will be of the same order of magnitude. Ifthere are many low lying states of energy, substantially lower than kT, they all will be well populated, relative to ground state (i.e., eg).A 

further 
uniform distribution is that no 

consequence of such 

one state is heavily populated. Such a distribution corresponds to a large value of Q. In contrast, 
spaced 
in 

a kT 
a 0.1 kT a-5kT 

widely 
result 

energy-levels 
d very 

distributions of molecules amonig 
states and value of fapproaching. 

These 
illustrated in fig. (3). 

uneven 

e unity. situations are 

012 34S 01 23 0123 4 5678 The Boltzmann distribution
in the 
molecules

consined to their lowest energy-levels, when &>> > kT. Conversely, small energy gradations from level to level result in more nearly uniform distribution of molecules among the available 

Statcs Statcs States diagram shows that 
largely 

Fig. 3. Effect of quantum size on population of states. 
are 

states. 

(ii) According to Maxwell-Boltzmann's law 

P 

'**' 

'. .. 

um. The 
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n= Number of molecules in the energy state "'. 
no Number of molecules in the energy state denoted by 'zero'. 

Bi and go=Degeneracy of levels (state f' and zero), respectively. 
When Ey energy of zeroth level = 0, then go= 1 

where 

0 g; . e{/ATT 

Taking summation of the above equation, we get, 

But g/=f 
Hence, nnof 
Since, 
hence 

n =lo 

f 
no 

The equation states that partition function is the ratio of total number of molecules to the 
number of molecules in zeroth level. At absolute zero (T= OK) ort= 273°C, all the molecules tend 

to go in zeroth level. So, 
As 

T0;n Ro f= 1 
o Thus, the value of partition function is unity at absolute zero. As the temperature rises, more 

and more molecules go to higher energy levels and lesser molecules remain in zeroth level. Hence, 
according to equation, 

f will increase. Tn other words, higher the temperuture, larger is the value of partition 
function. 

(iv) Partition function was introduced by Fowler and is a dimensionless quantity. Its value 
depends. on the molecular weight, molar volume, temperature ete. It provides a link between 

microscopic properties of individual malecules (such as their discrete energy-levels, dipole moment 
etc.) and macroscopic properties of the system (such as entropy, polarization, molar heat etc). It 

may be defined as, the sum of the probability factors for the various energy levels or the 
ways in which the erergy of the system is partitioned amongst the molecules constituting 
the system.' In other words, partition fünction may be defined as, the reciprocal of the mole 
fraction of the molecules occupying the ground state (eg = 0)' It is also the ratio of the total number of molecules to the number of molecules in the ground state. ENTROPY AND PROBABILITY 

Boltzmann said that the thermodynamical entropy is related to the probability of the 
# dynamical equilibrium state. If S and W represent the entropy of an isolated system and the 
probability of a particular state, then according to Boltzmann, S f (W) futTya Tlendea Bh te 



ADVANCED PHYSICAL CHEMISTRY 

rder to understan and the nature of this function, consider two separate systems, having 

fes S and Sa and d Sg and thermodynamic probabilitics W and W2 Then, we have for the two 

As, S1 f(W) 18) 

Sg-f () 19) 

T the two systems are combined, the probability of the resulting system is the product 

W.x Wg, whereas the entropy being additive is S1 + S2. Hence, 
(20) S1,2-S +Sa=f(W1 x W) 

Combining equations (18), (19) and (20), we get, 
..21) f(W)+f(W)=f(W1 x Wi)

Diferentiating equation (21) with respect to W, keeping W2 constant, we get, 

..22 W2f WxWa)=f' (W) 
Now differentiating equation (22) again with respect to W2, keeping W constant, we get, 

WW2f" (Wx Wa) +f' (W1xWg)=0 

W (W)+f (W) =0 [As W W1x Wal 
or 

Put f(W)=X 

f"(W) dW then 

w X=0 
dW Thus, 

WdX+ XdW = 0 
or 

d (W.X=0 or 

On integration, we get, 
W.X=h 

where, is a constant having the same value as Boltzmann constant (R/N). 

Alternatively W.f' (W)=k 

wF(W= or 

df () kd 
W or 

f(W)= k log W+l .(23) 
On integration, 

where, I, is an integration constant. 

Equation (23) is known as Boltzmann equation. Planck found the value of 1, =0, so 

Boltzmann equation becomes, 
S =k log W ..(24) 

Equation (24) is known as Boltzmann-Planck equation. 
Problem 1: 10 mmolecules of a gas ure present in a container mraintained at 298K. What is the probobility 

that all ten molecules will be found simullaneously, in one half of the container? 

Solution: N=10 molecules 
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