The Stirling's theorem is an approximation and is only valid when n is very large. For example, let us calculate the value of $\ln 5!$ with and without Stirling's theorem.

$$
\begin{aligned}
5! & =5 \times 4 \times 3 \times 2 \times 1=120 \\
\ln 5! & =\ln 120=2.303 \log 120 \\
& =4.7883
\end{aligned}
$$

By Stirling's theorem,

$$
\ln x!=x \ln x-x
$$

$$
\begin{aligned}
\ln 5! & =5 \ln 5-5 \\
& =5 \times 2.303 \log 5-5 \\
& =8.0486-5=3.0486
\end{aligned}
$$

$$
\ln n!=n \cdot \ln n-n
$$

The above calculations show that Stirling's theorem is valid only when n is very large.

PROBABILITY

Planck gave the concept of thermodynamic probability or statistical probcibility (denoted by P) to indicate the total number of possible complexions or microstates for any given combination.

The thermodynamic probability of a macrostate of a system is defined as the total number of different ways (ie., total number of microstates) by which the given microstate may be realised. It is denoted by P or W.
$\therefore P$ of a macrostate $=$ Number of microstates corresponding to that macrostate. very great number. It is to remember, that thermodynamic probability is proportional to mathematical probability*.

Consider a system of volume V containing n identical and distinguishable particles; the value of n being very large. Let E_{t} be the total energy of the system whose temperature is T. It is clear that all the particles will not have the same energy. Suppose n_{0} particles are in energy level ε_{0}, n_{1} particles are in energy level ε_{1} and so on. Then, $\quad n_{0}$ pare in energy level ε_{0}

Also

$$
\frac{E_{t}=n_{0} \varepsilon_{0}+n_{1} \varepsilon_{1}+n_{2} \varepsilon_{2}+\ldots n_{i} \varepsilon_{i}+\ldots=\sum n_{i} \varepsilon_{i}}{n=n_{0}+n_{1}+n_{2}+\ldots n_{i}+\ldots=\Sigma n_{i}}
$$

As the occupation numbers, $n_{1}, n_{2}, n_{3} \ldots$ etc., in different energy levels change, the distribution also changes. There are obviously number of ways of distribution, similar to the arrangement of n boys in p-rooms, so that one room has n_{0} boys and the other room has n_{1} boys and so on. This number is given by,

$$
\begin{equation*}
P=\frac{n!}{n_{0}!n_{1}!n_{2}!\ldots n_{p}!}=\frac{n!}{n / n_{1}!} \tag{1}
\end{equation*}
$$

The thermodynamic probability of a distribution is thus equal to the number of ways of given molecular system in different energy levels at a constant potations energy.

Taking the logarithm of both sides of equation (1)

[^0]\[

$$
\begin{equation*}
W=\frac{n!}{\pi, n!} \cdot C^{-n} \text {, where } C^{-n} \text { is the total number of possible cases. } \tag{2}
\end{equation*}
$$

\]

According to Stirling's theorem,

$$
\frac{\ln n!=n \ln n-n}{\Sigma \ln n_{i}!=\Sigma n_{i} \ln n_{i}-\Sigma n_{i}}
$$

$$
\ln P=n \ln n-n-\left(\sum n_{i} \ln n_{i}-\sum n_{i}\right)
$$

But

$$
\begin{align*}
\ln P & =n \ln n-n^{\prime}-\sum n_{i} \ln n_{i}+\sum n_{i} \\
n & =\sum n_{i} \tag{5}
\end{align*}
$$

\therefore Condition of $\ln P=n \ln n-\sum n_{i} \ln n_{i}$
The differential form of equation '(5) can be written as $\mathrm{ln}=0$)

$$
\begin{equation*}
d \ln P=d(n \ln n)-\sum d\left(n_{i} \ln n_{i}\right) \tag{6}
\end{equation*}
$$

But the total number of particles (n) is constant. So equation (6) becomes,

$$
\begin{equation*}
d \ln P=-\Sigma d\left(n_{i} \ln n_{i}\right) \tag{7}
\end{equation*}
$$

Modification of equation (1) : Two modifications have been introduced in equation (1).
(a) First modification: Certain states are energetically so close to each other that they cannot be distinguished from one another, i.e., degeneracy of energy-levels. Regarding this represents the degeneracy of statistical weight factor for each state is introduced. This factor ' g-degenerate' if there are g-number of possible state or level. A given energy-level is said to be energy-level.
(b) Second modification: This modification is based on the fact that molecules are indistinguishable. Therefore, we have to divide the total expression for P by n !.

On the basis of the above two corrections the expression for P can be written as,

$$
P=\frac{g_{0}^{n_{0}}}{n_{0}!} \cdot \frac{g_{1}^{n_{1}}}{n_{1}!} \cdot \frac{g_{2}^{n_{2}}}{n_{2}!} \ldots \frac{g_{i}^{n_{i}}}{n_{i}!}
$$

This equation is the result of classical statistical treatment modified by quantum statistics.
Problem 1 : Calculate the number of ways of distributing distinguishable molecules x, y and z between three energy levels so as to obtain the following sets of occupation number. $N_{0}=1, N_{1}=1, N_{2}=1$, ie., each energy level is occupied by one molecule.
Solution: The probability W is given by

$$
W=\frac{N!}{N_{0}!N_{1}!N_{2}!}
$$

Here,

$$
\begin{aligned}
& N=3, N_{0}=N_{1}=N_{2}=1 \\
& W=\frac{3!}{1!1!1!}=\frac{3 \times 2 \times 1}{1 \times 1 \times 1}=6
\end{aligned}
$$

There are six ways of distributing the three molecules us required in the problem. The same result may be obtained

Energy state $N_{0}=1, N_{1}=1, N_{2}=1$	Configuration						
f_{0}	I	II	II	IV	V	VI	
F_{1}	x	x	y	y	z	z	
f_{2}	y	z,	z	x	x	y	
z	y	x	z	y	x		

[^1]$$
\Omega_{\text {total }}=4+12+4=20
$$

Problem 5: Calculate the total number of complexions in arranging four distinguish energy level $0,1 \varepsilon, 2 \in$ provided these levels are respectively $3-, 2-$ and 2 -fold degenerate.

Solution: As calculated in the previous problem, we have

$$
\begin{aligned}
& \Omega_{1}=\frac{4!(3)^{3}}{(3!)(1!)}=108 \\
& \Omega_{2}=\frac{(4!)\left(3^{2}\right)\left(2^{2}\right)\left(2^{2}\right)}{(2!)(1!)(1!)}=432 \\
& \Omega=\frac{(4!)\left(3^{1}\right)\left(2^{3}\right)}{(3!)(1!)}=96 \\
& \Omega_{\text {totad }}=108+432+96=636
\end{aligned}
$$

MOST PROBABLE DISTRIBUTION AND MAXWELL-BOLTZMANN DISTRIBUTION

LAW OF ENERGY

Consider a system containing n particles having a total energy E_{t}. All particl. ; are in different energy levels. The allowed energy levels are fixed by quantum mechanical princ olles.

The thermodynamic probability (P) of this distribution is given by,
or

$$
\begin{aligned}
P & =\frac{n!}{\Pi n_{i}!}=\frac{n!}{n_{0}!n_{1}!n_{2}!\cdots n_{p}!} \\
\operatorname{og} P & =\log n!-\Sigma \log n_{i}!
\end{aligned}
$$

Since n, as also n_{i} are very large, we can apply Stirlings theorem, viz.,
Therefore;

$$
\log x!=x \log x-x
$$

$$
\begin{align*}
\log P & =\log n!-\sum \log n_{i}! \\
& =n \log n-n-\left[n_{1} \log n_{1}-n_{1}+n_{2} \log n_{2}-n_{2} \ldots\right] \\
\log P & =n \log n-\sum n_{i} \log n_{i}-n^{\prime}+\sum n_{i} \\
& =n \log n-\sum n_{i} \log n_{i} \tag{1}
\end{align*}
$$

We can find out the most probable distribution, when the system attains quilibrium. The probability will be maximum when the distribution corresponding to equilibriwm is attained. In other words, at equilibrium distribution, the magnitude of P and, therefore, of $\log P$ will be maximum. Hence, at equlibrium, $d \log P=0$.

At equilibrium, equation (1) can be written as,

$$
d \log P=d(n \log n)-d\left(\sum n_{i} \log n_{i}\right)=0
$$

$$
\begin{aligned}
& d\left(\sum n_{i} \log n_{i}\right)=0 \\
& \sum \log n_{i} d n_{i}+\sum d n_{i}=0
\end{aligned}
$$

Since $\sum n_{i}=n=$ constant, therefore, $\sum d n_{i}=0$

$$
\therefore \quad \sum \log n_{i} d n_{i}=0
$$

For the given system, the total energy $\left(E_{t}\right)$ and the total number of partile (n) remai constant, i.e.,

$$
\begin{aligned}
n & =\sum n_{i} \text { or } d n=\sum d n_{i}=0 \\
E_{t} & =\sum n_{i} \varepsilon_{i} \text { or } d E_{t}=\sum \varepsilon_{i} d n_{i}=0
\end{aligned}
$$

or

$$
\begin{aligned}
\Sigma \log n_{i} d n_{i}+\alpha \Sigma d n_{i}+\beta \Sigma \varepsilon_{i} d n_{i} & =0 \\
d n_{i}\left(\Sigma \log n_{i}+\alpha+\beta \Sigma \varepsilon_{i}\right) & =0
\end{aligned}
$$

Since α and β are independent, the restraining conditions are removed, and $d n_{i} \neq 0$, so this relation will hold good for any energy level or cell. Thus,
or
or

$$
\begin{align*}
\log n_{i}+\alpha & +\beta \varepsilon_{i}=0 \\
\log n_{i} & =-\alpha-\beta \varepsilon_{i} \\
n_{i} & =e^{-\alpha} \cdot e^{-\beta \varepsilon_{i}} \tag{5}
\end{align*}
$$

Equation (5) gives the number of particles in each energy level (α, β are unknown arbitrary constants). It is one form of the celebrated Boltmann distribution law.

$$
\begin{align*}
& n=\sum n_{i}=e^{-\alpha} \cdot \sum e^{-\beta \varepsilon_{i}} \tag{6}\\
& \frac{n_{i}}{n}=\frac{e^{-\beta \varepsilon_{i}}}{\sum e^{-\beta \varepsilon_{i}}} \tag{7}
\end{align*}
$$

Equation (6) is known as Maxwell-Boltzmann distribution lasso: This law gives at a temperature T, the fraction of the total number of molecules which at equilibrium or most probable state would possess energy ε_{i}. Equation (7) gives the populations of the most probable configuration of the ensemble. This is known as canonical distribution.

A new factor may, however, be introduced at this point. In a given cell or energy level i, all the particles may have the same energy ε_{i}, but the energy may be arrayed in different ways for different particles. So, such a state in which there are different ways of array is known as 'degenerate'. If there are g_{i} number of possible distributions of energy in a given energy level i, then the state is said to be " g_{i}-degenerate", where g_{i} is called the statistical weight factor.

Thus, equations (5) and (6) become :
and

$$
\begin{equation*}
n_{i}=e^{-\alpha} \cdot g_{i} e^{-\beta \varepsilon_{i}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
n_{i}=e^{-\alpha} \cdot \sum_{g_{i}} e^{-\beta \epsilon_{i}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\therefore \quad \frac{n_{i}}{n}=\frac{g_{i} e^{-\beta \varepsilon_{i}}}{\sum_{g_{i}} e^{-\beta \varepsilon_{i}}} \tag{10}
\end{equation*}
$$

PARTITION FUNCTION

In equation (7), the factor $\sum e^{-\beta \varepsilon_{i}}$ represents the sum of the factor $e^{-\beta \varepsilon_{i}}$ over all the energy levels. It is called the partition function and is denoted by f. Therefore,

$$
f=\Sigma e^{-\beta \varepsilon_{i}}
$$

The factor β is called the modulus of distribution.
Evaluation of β. The Boltzmann law can be written in terms of partition function as :
or

$$
\begin{gathered}
n_{i}=\frac{n}{f} \cdot e^{-\beta_{i}} \\
\log n_{i}=\log n-\log f-\beta \varepsilon_{i} \\
d \sum n_{i} \cdot d \ln n_{i}=0 \\
\sum n_{i}\left(d \ln n_{i}\right)+\sum \ln n_{i} d n_{i}
\end{gathered}
$$

We know that both entropy and probability attain maximum value at equilibrium. T_{n} relation between entropy (S) and probability (W) is given by,

$$
S=k \log W
$$

Since probability (W) is proportional to the thermodynamic probability (P), we have,

$$
S-B=k \log P
$$

where, B is a constant and has been taken as zero by Planck.
Substituting the value of P from equation (1) in the last equation, we have,

$$
\begin{align*}
\frac{S-B}{k} & =n \log n-\sum n_{i}\left(\log n-\log f-\beta \varepsilon_{i}\right) . \\
& =n \log n-\log n \sum n_{i}+\log f \sum n_{i}+\beta \sum n_{i} \varepsilon_{i} \\
& =n \log n-n \log n+n \log f+\beta \varepsilon_{i} n . \\
\frac{S-B}{k} & \left.=n \log f+\beta E_{t} \quad \text { (where } E_{t}=\varepsilon_{i} n\right) \tag{12}\\
S-B & =n k \log f+\beta E_{i} k \tag{13}
\end{align*}
$$

Differentiating this equation with respect to E_{ℓ} at constant
$\left(\frac{d S}{d E_{t}}\right)_{V}=\frac{d}{f} \cdot \frac{f}{d \beta}\left(\frac{d \rho}{d E_{t}}\right)_{V}+k \dot{\beta}+k E_{t}\left(\frac{d \beta}{d E_{t}}\right)_{V}$
Since,

$$
\begin{align*}
& \left(\frac{d S}{d E_{t}}\right)_{V}=\frac{n k}{f} \cdot \frac{d f}{d \beta}\left(\frac{d \beta}{d E_{t}}\right)_{V}+k \dot{\beta}+k E_{t}\left(\frac{d \beta}{d E_{t}}\right)_{V V} \tag{rex}\\
& \vdots \quad f=\Sigma e^{-B \varepsilon_{i}} .
\end{align*}
$$

$$
\therefore \quad \frac{d f}{d \beta}=-\sum \varepsilon_{i} e^{-\beta \varepsilon_{i}}=\frac{E_{t}}{n} \cdot f
$$

$$
\begin{aligned}
& \therefore \\
& \therefore\left(\frac{d S}{d E_{L}}\right)_{V}
\end{aligned}=-\frac{n k}{f} \cdot\left(\frac{E_{t} \cdot f}{n}\right)\left(\frac{d \beta}{d E_{t}}\right)_{V}+k \beta+k E_{t}\left(\frac{d \beta}{d E_{t}}\right)
$$

When the energy $\left(E_{t}\right)$ is purely the internal energy (E), then,

$$
(d S)
$$

$$
\begin{equation*}
\left(\frac{d S}{d E}\right)_{V}=k \beta \tag{14}
\end{equation*}
$$

From first and second law of thermodynamics, we have
or

From equations (14) and (15), we have

$$
f=\Sigma e^{-\varepsilon_{i} / k T}
$$

If we consider the degenerate state of a system, then,
So, undetermined multiplier,

$$
k \beta=\frac{1}{T^{\prime}}
$$

Therefore, partition function,

$$
\beta=\frac{1}{k T},
$$

$$
\begin{equation*}
n_{i}=\frac{n}{f} e^{-e_{i} / k T} \tag{16}
\end{equation*}
$$

$$
f=\Sigma_{\Delta i} e^{-f_{i} / k T}
$$

$$
n_{i}=\frac{n}{f} g_{i} e^{-t_{i} / k T}
$$

tysical Significance of f

(i) Qualitatively speaking, the partition function indicates how the particles are distributed among the various energy states (levels or cells). It is a measure of available energy-levels.
(ii) Partition function is a quantity, characteristic of every substance (and also of a mixture of substances or a system). It reflects the diversity of energy states of the molecules of a system and relative probability of these states (in comparison to the lowest energy-level, ε_{0}). In other words, therelative population of any two quantum states p and q is given by the ratio n_{p} / n_{q} obtained by the application of equation (17),

$$
n_{p}=n g_{p} \frac{e^{-\varepsilon_{p} / k T}}{f}
$$

and

$$
\begin{aligned}
& n_{q}=n g_{q} \frac{e^{-\varepsilon_{q} / k T}}{f} \\
& \frac{p_{p}}{p_{q}}=\frac{n_{p}}{n_{q}}=\left(\frac{g_{p}}{g_{q}}\right) e^{-\left(\varepsilon_{p}-\varepsilon_{q}\right) / k T}
\end{aligned}
$$

Here ' p ' terms denote the probability at a particular level. The second form of distribution law gives the population in two different levels.

Case 1. If these two states are degenerate, i.e., $\varepsilon_{p}=\varepsilon_{q}$, it follows that they are equally populated.

Case 2. If $\varepsilon_{p}>\varepsilon_{q}$, then $n_{p}<n_{q}$, i.e., states are equally populated.
Case 3. As long as $\left(\varepsilon_{p}-\varepsilon_{q}\right)<k T$, the population will be of the same order of magnitude. If there are many low lying states of energy, substantially lower than $k T$, they all will be well populated, relative to ground state (i.e., ε_{0}). A further consequence of such uniform distribution is that no one state is heavily populated. Such a distribution corresponds to a large value of Q. In contrast, widely spaced energy-levels result in very uneven distributions of molecules among states and value of f approaching. unity. These situations are illustrated in fig. (3).

The Boltzmann distribution in the diagram shows that molecules are largely

Fig. 3. Effect of quantum size on population of states. confined to their lowest energy-levels, when $\varepsilon \ggg k T$. Conversely, small energy gradations from level to level result in more nearly uniform distribution of molecules among the available states.
(iii) According to Maxwell-Boltzmann's law

$$
\frac{n_{i}}{n_{0}}=\left(\frac{g_{i}}{g_{0}}\right) e^{-\varepsilon_{i} / k \tau}
$$

$$
n_{i}=\text { Number of molecules in the energy state ' } i \text { '. }
$$

$\therefore \quad n_{i}=n_{0} \cdot g_{i} \cdot e^{-\varepsilon_{i} / k T}$
Taking summation of the above equation, we get,

But

$$
\Sigma n_{i}=n_{0} \Sigma g_{i} e^{-\varepsilon_{i} / k T} .
$$

Hence,

$$
\sum_{\xi_{i}} e^{-\varepsilon_{i} / k T}=f
$$

Since,

$$
\sum n_{i}=n_{0} f
$$

hence

$$
\Sigma n_{i}=n
$$

or

$$
f=\frac{n}{n_{0}}
$$

The equation states that partition function is the ratio of total number of molecules to the number of molecules in zeroth level. At absolute zero ($T=0 \mathrm{~K}$) or $t=273^{\circ} \mathrm{C}$, all the molecules tend to go in zeroth level. So,

$$
T \rightarrow 0 ; n \rightarrow n_{0} \quad \therefore f=\frac{n}{n_{0}} \rightarrow 1
$$

Thus, the value of partition function is unity at absolute zero. As the temperature rises, more and more molecules go to higher energy levels and lesser molecules remain in zeroth level. Hence, according to equation

$$
f=\frac{n}{n_{0}}
$$

f will increase. In other words, higher the temperature, larger is the value of partition function.
(iv) Partition function was introduced by Fowler and is a dimensionless quantity. Its value' depends. on the molecular weight, molar volume, temperature etc. It provides a link between microscopic properties of individual molecules (such as their discrete energy-levels, dipole moment. etc.) and macroscopic properties of the system (such as entropy, polarization, molar dipole moment. may be defined as, 'the sum of the probability factors for the various energy levels or the ways in which the energy of the system is partitioned amongst the molecules constituting the system.' In other words, partition function may be defined as, 'the reciprocal of the mole fraction of the molecules occupying the ground state $\left(\varepsilon_{0}=0\right)$.' It is also the ratio of the total number of molecules to the number of molecules in the ground state.

藘

ENTROPY AND PROBABILITY

Boltzmann said that the thermodynamical entropy is related to the probability of the dynamical equilibrium state. If S and W represent the entropy of an isolated system and the probability of a particular state, then according to Boltzmann,
Feptrija Jitendga Shiite:
sutujg

Frder to understand the nature of this function, consider two separate systems, having fes S_{1} and S_{2} and thermodynamic probabilities W_{1} and W_{2}. Then, we have for the two

$$
\begin{align*}
& S_{1}=f\left(W_{1}\right) \tag{18}\\
& S_{2}=f\left(W_{2}\right) \tag{19}
\end{align*}
$$

If the two systems are combined, the probability of the resulting system is the product $W_{1} \times W_{2}$, whereas the entropy being additive is $S_{1}+S_{2}$. Hence,

$$
\begin{equation*}
S_{1,2}=S_{1}+S_{2}=f\left(W_{1} \times W_{2}\right) \tag{20}
\end{equation*}
$$

Combining equations (18), (19) and (20), we get,

$$
\begin{equation*}
f\left(W_{1}\right)+f\left(W_{2}\right)=f\left(W_{1} \times W_{2}\right) \tag{21}
\end{equation*}
$$

Differentiating equation (21) with respect to W_{1}, keeping W_{2} constant, we get,

$$
\begin{equation*}
W_{2} \cdot f^{\prime}\left(W_{1} \times W_{2}\right)=f^{\prime}\left(W_{1}\right) \tag{22}
\end{equation*}
$$

Now differentiating equation (22) again with respect to W_{2}, keeping W_{1} constant, we.get,

Put

$$
\begin{aligned}
W_{1} W_{2} \cdot f^{\prime \prime}\left(W_{1} \times W_{2}\right)+f^{\prime}\left(W_{1} \times W_{2}\right) & =0 \\
W f^{\prime \prime}(W)+f^{\prime}(W) & =0 \\
f^{\prime}(W) & =X \\
\frac{d X}{d W} & =f^{\prime \prime}(W)
\end{aligned}
$$

then

Thus,

$$
W \frac{d X}{d W}+X=0
$$

$$
\begin{aligned}
W d X+X d W & =0 \\
d(W . X) & =0
\end{aligned}
$$

On integration, we get,

$$
W \cdot X=k
$$

where, k is a constant having the same value as Boltzmann constant (R / N).
Alternatively,

$$
\begin{align*}
W \cdot f^{\prime}(W) & =k \\
W \frac{d}{d W}[f(W)] & =k \\
d f(W) k & =\frac{d W}{W} \\
f(W) & =k \log W+I_{c} \tag{23}
\end{align*}
$$

On integration,
where, I_{c} is an integration constant.
Equation (23) is known as Boltzmann equation. Planck found the value of $I_{c}=0$, so Boltzmann equation becomés,

$$
\begin{equation*}
S=k \log W \tag{24}
\end{equation*}
$$

Equation (24) is known as Boltzmann-Planck equation.
次 Problem 1: 10 molecules of a gas are present in a container maintained at 298K. What is the probubility that all ten molecules will be found simultaneously, in one half of the container?

Solution: $N=10$ molecules

[^0]: *The themadgnamic $n=2 \ln n_{i}$!

[^1]: There are six possible configurations.

