: : ADVANCED PHYSICAL
b CAL CHEMISTRY

Thie Stirling’s theorem is an approximation and is only valid when n is ve

ry large. Foy
example, let us calculate the value of In 5 ! with and without Stirling’s theorem., ‘
’ 5l=bx4x3x2x1=120 - : @
In51=1n120=2303 log 120 - : {
=4,7883 { ‘);'\ " A O 20 g |
By Stirling’s theorem, ' )
‘ . In5!=5In5-45 [N AR vy —

=6x2308 log5-5
=8.0486 - 5 = 3.0486
The above calculations show that Stirling’s theorem is valid only whe

n n 18 very large.
o B THERMODYNAMIC PROBABILITY :
! probability or statistical probability (denoted
by P) to indicate the total number of possible complexions or microstates for any given combination,

- The thermod&namic probability of a acrostate of a system is d

,,,,, defined as the totq]
Mﬂﬁﬁzﬁmwm_( Le., total number of microstates) by

which the given microstate
may be realised, It is denoted by P or |/ .

P GNE = HIE acr i zﬁ macrostate.
" The thermedynamic probability for different States (macrostates) of molecular systems is 5

| Very great number. It is to remember, that thermodynamic prebability s proportional to
\ mathematical probability* :

~ Consider a system of yo e V containing n identica] an istinguishable particles; the value
of n being very large. Let E, be the total energy of the system whose temperature js T. It is clear
‘ that all the particles will n

ot have the same energy. Suppose o particles are in energy level ¢
€0, 11 particles are in energy level &) and so on. Then, : ‘

,FL=£l%jflflf "\252;*'_---\11@- T =T

Also BENptnytngt . mph =¥y

As the occupation numbers, ny, n,, ng ..
distribution also changes. There are o
arrangement of n boys in p-rooms, so th
50 on. This number is given by,

nl ‘
t :n fn. 'ngl.. . n. 1~ 1‘1 @ - (1)
B Lt S ZERI Y I% N -

Equation (1) is ysed to detennin?_@gg;@m]&fgl all distributions

of all the molecules in a '
giveh molecular system in different energy levels at 3 constant total cnergy ‘
Taking the logarithm of both sides of equation (1)
1nP=lnn!—(lnnol+lnn1 P+lnng !+
or o lnP=lnn!—Elnn,—l

- etc, in different epe
bviously number of v
at one room has ng boys

rgy levels change, the
ays of distribution, similar to the
and the other room hag ny boys and

< tlnng

@
* The thermodynamie probability (P) is relped to mathematical probab; :

ility (W) which jq given by .
is the total number of Possible cageg.

mraatimiatney .
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CHEMICAL STATISTICS OR STATISTICAL THERMODYNAMICS el 2E 3 w{"a

4 .'.‘ v

According to Stirling’s theorem, - @ | W

| \lnnl=nlan-n] - _ e,

. Zlanl=Sn;lnn-Ln, o - (4 \
Putting the val

ues from equations (3) and (4) in equation (2), we get,
InP=nlnn-n-@Enlon-2n)

or 1nP=n1nn*-n”—2n,-lnni+§,rii
But n= Zni (5)
InP=nlnn-Xn;lnn
Cand thon | o | Inp =0
The differential fom:i! ';?1‘6'5&01\ g%oag)o be rit(tén as, )

dinP=d(nlnn)-3d (n;lnn

But the total number of particles (n) is constant, So équation (6) becomes, S

dlnP=—2d.(ni_lnni) ' .. (7)
Modification of equation (1): Two modifications have been introduced in equation (1).
(a) First modi

ation : Certain states are energétically so close to each other thiii—they
cannot be distinguished from one ano
correction, a factor e

ther, ie.,
represents the deg

.- (6)

degeneracy of. energy-levels. Regardjng this
called statistical weight factor for-each state is introduced. This factor
. ' the degeneracy of the given energy state or level. A given energy-level is said to be
&§-degenerate’ if there are g-number of possible dj
energy-level,

stributions (equal distribution) of energy in that

Tnglng U ng U
This equation is the result of classical statistical treatm

Problem 1 :

Solution :  The probability Wis given by

N1
W"N,,!Nlmzl

Here, N=3,Ny=N;=N,=1

=—— e T

There are six ways of distributing the three molecules us required in the problem. The same result lmly be obtaineg
by considering the following treatment. .

)
Configuration
Energy state -
. = 1 N = I,NZ = l
No=1,M ] ) 11 v v VI
€0 . ' b X Yy ¥ z z
£ Yy z, 2 * ¥ y
£ z Y < £ L .
‘:-“if There are six possible conﬁgumtions.
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N N > N . O
) Quq=4+1244=20 \»‘5‘ \@@&"
A ' _ ‘o . : isli . 7 ‘be' :
v Problem § 1 Calculate the total number of complexions in arr anging four distinguish . Heayy, & \
b energy level 0, 1¢, 2t provided these levels are respectively 3-,2- and 2~ fold degenes i i ‘N‘\
Solullon :  As ealeulated in the previous problem, we have . & & &
N - ‘ @ | '
i- i @hHay 18 ﬁé
% 1 ' l . :;
-wiehehe) .
% “="eyanay
5- =!4‘”31HZ [__96 i .
Al @yay - ' S \
Il Q=108+ 432.+ 96 = 635 . 3
” 1¢, ® MOST PROBABLE DISTRIBUTION AND MAXWELL-BOLTZMANN DISTRIBUTION
3 LAW OF ENERGY : | | j '~'
[“ ‘ C-onsidel.- a system containing n particies having a total energy E,. All particl. : are in different
§.  eoergy levels, The allowed eaergy levels are fixed by quantum mechanical princ glé’s.
] The thermodynamic probability () of this distribution is given by, :
3 T T o o o —————
| | A Y LI
i or logP=1ogn!—Zlogni! L '
3 . ‘
; Since n, as also n; are very large, we can apply Stirling’s theorem, viz., '
4’ - logxl=xlogx -y
i Therefore; logP=logn!-3 log n:! .
l:, ._ =nlogn-n- {nylog 11— ny+nglog ng—ny..]
i or . ) logP:n.logn—Znilog’ni—y/»+E/1{i B
1 : =n 1cgn—2.".,- ‘.Ogni o (Sincczﬁ;-:n) e
:,1 We can find out the most probable distribution, when the sys attains quilibrium The
3 probability will be maximum when the distribution corresponding to equilibrivyy i attaint;d. In
% other words, at equilibrium distribution, the magnitude of P and, therefore, of :-Iog P will be
;  maxmum. Hence, at equlibrium, d log P =0, - : ‘
: ' At equilibrium, equation (1) can be written as, -
by : dlogP=d(n log n)—d(}.‘.,n,-log,ni)=0
§ e, d (2 n;log ny) =0
il or Zlogn;dn;+%dn;=0
ol ' <
e Since Zn; = n = constant, therefore, Ydn; =0
z | Llogn;dn;=0 e {0
"-"3,-' For the given system, the total energy (E
constant, i.e., '

¢) and the total number of pa\f'\\:l?s (n) remai
n=Xn; or dn=3Ydn;=0

~

¢
E,=Zn;e or dE =X dn;=0
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ADVANCED PHYSICAL CHEMygpyy L
\\ ¢

.‘g/f ' ! '
: ange's Method of Undetermined Multiples
r

Y Multiply equations (3) and (4) by arbitrary undetermined multipliers o and f, respectively anq , r;

' add equation (2), we get, - | | - A

oy Llogn;dn; +aXdn;+ e dn, =0 , A

" dn,-():lognl-+a+ﬂzei)=o | E
Since & and P are independent, the restraining conditions are removed, and dn;#0,80 thig . &
relation will hold good for any energy level or cell. Thus, : firr

| logn; + a4 e =0 :

or ' l-ogn‘-=—al‘—[3£,- - i

o0 ~ m=e el NOR
Equation (5) gives the number of particles in each energy level (0, B aré unknown arbitrary o
constants). It is one form of the celebrated Boltmann distribution law, - : i
n=In;=e "yl '; 6 J
/ D S|

N A e - B

n | OB

B

Equation (6) is known as Maxwell-Boltzmann distribution law - This law gives at a ';‘,'-

temperature T, the fraction of the tota] number of molecules which at equilibrium or most probable
state would possess energy & Equation (7) gives the populations of the most probable configuration
of the ensemble. This is known as canonical distribution. '

Anew factor may, however, be introduced at this point. In a given cell or energy level 1, all the
particles may have the same energy ¢;, but the energy may be arrayed in different ways for

s

different particles. So, such a state in which there are different ways of array is known ag ‘ .
degenerate’. If there are £ number of possible distributions of energy in a given energy level i, then
the state is said to be “g-degenerate” where 8i 1s called the statistical weight factor. b
'fhus, equations (5) and (6) become : ‘
ni=e % g P s : @8

and R ’ ) . . ni:e—a-¥1 e_ﬂel ’ . a.,. e (9) 21
n_ge i ~ L

. W‘_e_ , A

Bl PARTITION FUNCTION

In equation (7), the factor Ze~ e represents the sum of the factor e~ P& gver all the energy
levels. It is called the partition function and is denoted by f. Therefore,

. fz'Ze— Bci . /
The factor B is called the modulus of distribution.
Evaluation of f. The Boltzmann law can be written in terms of partition function as :
ni=%.e~ﬂ€i ,\A ZV\" ’QV\V\\"‘_‘O _
|
or : log n; =logn -log f- fe; = dni « =l dyu) i
AEW. ddnn; = o Gdni) din n -t Cz‘_(r\f\q dan
T ’ !
20 (4 fang) A= tani oy ,;
Rhat e SRR CHPTIRE RN | s s T
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1

We know that both entmpy and prob

S=klogW
Since probability (W) is proportional to the thermodynamm probabxhty (P), we have
. S-B=klogP-

- where, Bis a constant and has been taken as zero by Planck. "

(

N‘Jﬂ‘r BE’.-N 2

attain m imum value at equilibriyy, n,
relahon between entropy (S) and probability (W) is given by, '

Subshtuhng the value of P from equation (1)in the last equatlon we have, :

S-B

T P logn =Zn; (logn -logf- Be;) [From equation (11:)]
” —nlogn logn)f.nﬁlogf)?n +B),nle‘
é‘ =nlogn- nlogn+nlogf+ﬁen .
3 S-B "
q or =nlogf+ BE, (wherg E;= em) (]_2)
ﬁl or s B=nklogf+BEK - .(13)
;, Dlﬂ‘erentlatmg this equation wity r&:pect to E, at constant volume, we get,
i ﬁ nk af(d d
’r Since, . A . f=XeBe
T - ‘
| é[ B -
CdgTTRE =
b2 dsy E,. dp’ d
L ( B, f ( n'[][dE;]v”‘ﬁ*kE( B‘}
Z =k : ;
_ When the 'BUBTEY,(ED_ is purely the interng] energy (E), then
( } =k --(14)
':'E' From first and second law of ﬂ'lel’modyna]mcz, we have
- dE+Pgv= dQ TdS
as) 1
"-i?’r From equations (14) and (15), we have
w 1
l’ kB = _i'
So, undetcmlined'multuplier, B= Tl'f‘ '
%, k
| 1 Therefore, partition function, f=Ze&/hT
T and | =l it 19
) If we consider the dcgcnor,\to smte of a sysmm then, ] ) £y
. ) / L { y( Ny N ‘e
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‘ f= xgi e—e,/)aT . @
nﬁ%gi gt/ kT 4 A1)
ﬁslcal Significance of f

/" (i) Qualitatively speaking, the partition functjon indicates how the particles are distributed
mong the various energy states (levels or cells), It is.a measure of available energy-levels,

/o Partition function is a quantity, charactoristic of every substance (und also of a mixture of

/ substances or a system). It reflects the diversity of energy states of the molecules of a system ang

relative probability of these states (in comparison to the lowestene

relative population of any two quantum states pandqi

s given by the ratio n,/n,, obtained by the
application of equation (17), k

' e—ep/kT

Mp=ngp T
‘ ' - ot /HT
and g =ng, 7

| Pg T \&)
Here p’ terms denote the probability at a particular level. The secon
gives the population in two different levels,

,_ Case 1. If these two states are degenerate, ie., ep='e
| populated.

Case 2.1fe,> £, then np <ny, Le., states are equally populated.

Case 3. As long as (€, — &)< T, the population will be of the same order of magnitude. If there

are many low lying states of energy, substantially lower than kT, they all will be well populated,
. relative to ground state (i.e., ). A : :

- further consequence of such ]
/ uniform distribution is that no
one state is heavily populated.
Such a distribution corresponds
to a large value of @. In contrast,
widely * spaced  energy-levels
resull  in  very  umeven
distributions of molecules among
states and value of f approaching.
unity. These situations are B
illustrated in fig. (3).

The Boltzmann distribution
in the diagram shows that
molecules are largely .
confined to their lowest energy-levels, when £>> > kT Conversely, small energy gradations

from level to level result in more nearly uniform distribution of molecules among the available
states. '

Pp_Mp_ [é'z] o (6~ /AT
d form of distribution Jayw

¢ it follows that they are equally

8= kT - a=01kT
a=5kT

% of Population —p-
%% 6%’?0pulation —

% of Population —»

012345 0123 012345678

Sialcs — States —— " States ——
Fig. 8. Effect of quantum size on population of states.

(iii) According to Maxwell-Boltzmann's law

M _[8i) - emr
Ny 8o

rgy-level, €). In other words, the.
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4 : CHEMICAL STATISTICS OR STATISTICAL THERMODYNAMICS — s é; &
+ where *'n;=Number of molecules in the energy state 7. . ,?{?ﬂ
1 no = Number of molecules in the energy state Qenotet.i by “zero’,
@ &i and g, = Degeneracy of levels (state i’ and ‘zer0’), respectively. .
When ¢, = cnergy of zeroth level = 0, then gy =1 <
n;=ng.g.e &/kT _. »
Taking summation of the above equation, we get,

In;=nyt g; e G/AT

q Jo oupe o e P
T2 T R URDRC e 2o : ;

But Ig e W= f - h
. Hence, In;= nof
‘ Since, In;=p,
 hence n=nyf
n i
or =— ? I
et

The equation states fhat Partition function ig the rati
| number of molecyles jn zeroth level. At absolyte zero (T'=0K) or ¢ = 273°C, all the molecules tend
to go in zeroth level. So, -

As B 'T~>'O;n-—')no sf=2

NIRYe '?!""F‘@EF%F&JP'EU}ME, oy

Hence ,
< according to equation, ! 7
i n I
T

5 f will increase. Tn other words, higher the temperature, larger i the value of bartition

3 . .

= function. ' ..

g
* /B ENTROPY AND PROBABILITY

it
o
i

is related to ‘the probability of the

> entropy of an jsolated system and the
na,

probability of a particular state, then according to Boltzma

) o SEfW
o ‘ [ U:hl & ﬂl‘f’{\(j{ﬁ_{,’j f{bha i e

0 of total number of Iolecules to the

Sremmiit Ln. -
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9,

\{‘ m-der to understand the nature of this function, consider two separate systems, having 1

,{;;s g, and S, and thermodynamic probabilities Wy and Wy, Then, we have for the two i

*ﬁnsy - - Sy=f(Wy) | @ .{18)

So=f (W) ' L9 1

f; If the two systemS are combined, the probability of the resulting system is the product
Wy, whereas the entropy being additive is S + Sp. Hence, '

S19=81+8y=F(Wyx Wy) - ..(20)
Combining equations (18), (19) and (20), we get, '
fW)+f(W)=f (W xWg) o (21)
Differentiating equation (21) with respect to Wy, keeping Wy constant, we get, :
Wo.f' TxWo)=f' (V) ey
Now differentiating equation (22) again with respect to Wy, keeping W, constant, we get, B
o W1W2.f”(W}XW2)+f'(W1$<W2)=O . . ;
or ‘ Wi '(W+f' (W)=0 (As W=W; x W]
P\lt . f’ (W) :X
then _ -ccliXV—V—i ” (W)
dX  x- f
Thus, W +X=0 | |
or . | WdX + XdW =0 .
o d(W.X)=0 .
On integration, we "get, : %
. | “W.X=k | ‘ 3‘ |
where, % is a constant having the same value as Boltzmann constant (R/N). . .
. Altgrnatively, W.f W=k o | \ :
J : .
On integration, | - f (_W) =klogW+I, | ...(23)

where, I, is an integration constant.

Equation (23) is known as Boltzmann equation. Planck found the value of I.=0, so
Boltzmann equation becomes, : :

S=klog W ‘ ' (24
Equation (24) is known as Boltzmann-Planck equation. '

s

Problem 1 : 10 molecules of a gas are present in a container maintained at 298K. Wﬁd is the probubility
that all ten molecules will be found simultaneously, in one half of the container?

Solution: N =10 molecules
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